BCPST-2 2016-2017

TP Informatique n° 2 Révisions sur les structures itératives (illustrations sur les suites et les séries)

I. Les structures de contrôle

En informatique, on appelle **structure de contrôle** une commande qui contrôle l'ordre dans lequel les différentes instructions d'un programme sont exécutées.

On peut distinguer plusieurs types de structures de contrôle :

- a) les structures séquentielles : les différentes commandes sont exécutées les unes à la suite des autres *i.e.* dans un ordre séquentiel.
- b) les structures conditionnelles : qui permettent d'introduire des branchements conditionnels dans le programme. Un programme peut comporter plusieurs branches. Chacune d'elle est associée à une condition. La branche exécutée est la première dont la condition est réalisée.
- c) les structures itératives : qui permettent d'effectuer la répétition (i.e. l'itération) de commandes. Ces répétitions peuvent s'effectuer :
 - x un nombre de fois fixé explicitement par le programmeur. On utilise alors une boucle for.
 - x ou peuvent avoir lieu tant qu'une condition n'est pas réalisée. On utilise alors une boucle while.

II. La boucle for

II.1. Syntaxe générale

Une boucle for permet de réaliser la répétition d'un bloc d'instructions. En **Python**, la syntaxe classique de cette commande est la suivante.

for i in range(n):
 instruction

crire un pro	gramme pern	nettant d'affich	er un à un le	es éléments o	de range(5).	
		écution de ce p	orogramme?	De manière	générale que	produit l'in
1	uel est le ré		uel est le résultat de l'exécution de ce p	uel est le résultat de l'exécution de ce programme?	uel est le résultat de l'exécution de ce programme? De manière	rire un programme permettant d'afficher un à un les éléments de range (5). uel est le résultat de l'exécution de ce programme? De manière générale que action range (n)?

•	En procédant de même, décrire ce que produit les instructions range(3,9), puis range(3,9,2, et range(9,3,-1).
•	Une spécificité du langage Python est qu'il est possible d'itérer sur de nombreux objets. En utilisant le procédé précédent, écrire une itération sur la chaîne de caractère "ma chaîne" permettant d'afficher un à un les éléments de cet objet. Qu'obtient-on?
	2. Calcul du $m^{\text{\`e}me}$ élément d'une suite
On	considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :
	$\begin{cases} \forall n \in \mathbb{N}^*, \ u_{n+1} = 2u_n + n + 1 \\ u_1 = 1 \end{cases}$
>	Écrire un programme qui :
	× demande initialement à l'utilisateur d'entrer au clavier la valeur d'un entier m , × affiche la valeur du m ème élément de la suite (u_n) .
>	Calculer u_{12} et u_{20} à l'aide du programme précédent.

BCPST-2 2016-2017

► Modifier le programme précédent afin d'obtenir une fonction emeSuiteU qui : × prend en paramètre une variable m,	
× prend en parametre une variable \mathbf{m} , × renvoie le $\mathbf{m}^{\text{ème}}$ élément de la suite (u_n) .	
Calculer u_7 et u_{15} à l'aide de la fonction précédente.	
Selon vous, quels sont les avantages de la représentation sous forme de programm dialogue utilisateur? Sous forme de fonction?	ne avo
I. 2. Calcul des conscient (Konsette Proposition	
I.3. Calcul des m premiers éléments d'une suite	
Écrire un programme qui :	
× demande initialement à l'utilisateur d'entrer au clavier la valeur d'un entier m , × affiche la liste des des m premiers éléments de la suite (u_n) .	
× affiche la fiste des des in premiers elements de la suite (u_n) .	
Calculer les 5 premiers éléments de la suite à l'aide du programme précédent.	

- ▶ Modifier ce programme afin d'obtenir une fonction premSuiteU qui :
 - × prend en paramètre une variable m,
 - \times renvoie la liste des **m** premiers éléments de la suite (u_n) .

II.4. Calcul des sommes partielles d'ordre n

On considère maintenant les suites $(u_n)_{n\in\mathbb{N}}$ et (v_n) suivantes :

$$\forall n \in \mathbb{N}, \ u_n = \frac{n^2}{3^n}$$
 et
$$\begin{cases} v_0 = 1 \\ \forall n \in \mathbb{N}, \ v_{n+1} = \frac{2 v_n}{e^{v_n} + e^{-v_n}} \end{cases}$$

On notera par la suite $S_n = \sum_{k=0}^n u_k$ et $T_n = \sum_{k=0}^n v_k$ les sommes partielles d'ordre n des séries $\sum u_n$ et $\sum v_n$.

II.4.a) Calcul de S_n

- ► Écrire une fonction calculSn qui :
 - × prend en paramètre un entier n,
 - \times renvoie la valeur de S_n .

 $\qquad \qquad \textbf{Que vaut } S_0 \, ? \, S_5 \, ? \, S_{10} \, ? \, S_{100} \, ? \, S_{1000} \, ? \\$

BCPST-2 2016-2017

II.4.b	Calcul	de	T_n

Écrire une fond	tion calculTn qui :		
	ramètre un entier n,		
× renvoie la va			
	-		
	T. 0.T. 0		
Que vaut T_0 ?	$T_{100}? T_{10000}?$		
Calcul do	s n promières sommes pa	ctiolles	
	s n premières sommes pa		
.a) Calcul d	es n premières sommes part	ielles de $\sum u_n$	
o.a) Calcul d		ielles de $\sum u_n$	
.a) Calcul d	es n premières sommes part	ielles de $\sum u_n$	
.a) Calcul d	es n premières sommes part	ielles de $\sum u_n$	
Soit $n \in \mathbb{N}$. Qu	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1}	sielles de $\sum u_n$	
Soit $n \in \mathbb{N}$. QuEn tirant profi	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} et de l'égalité précédente, écrire	sielles de $\sum u_n$	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} et de l'égalité précédente, écrire ramètre une variable \mathbf{n} ,	ielles de $\sum u_n$?	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} de l'égalité précédente, écrire ramètre une variable \mathbf{n} , te des \mathbf{n} premières valeurs de la	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} et de l'égalité précédente, écrire ramètre une variable \mathbf{n} ,	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} de l'égalité précédente, écrire ramètre une variable \mathbf{n} , te des \mathbf{n} premières valeurs de la	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} de l'égalité précédente, écrire ramètre une variable \mathbf{n} , te des \mathbf{n} premières valeurs de la	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} de l'égalité précédente, écrire ramètre une variable \mathbf{n} , te des \mathbf{n} premières valeurs de la	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} de l'égalité précédente, écrire ramètre une variable \mathbf{n} , te des \mathbf{n} premières valeurs de la	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} de l'égalité précédente, écrire ramètre une variable \mathbf{n} , te des \mathbf{n} premières valeurs de la	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} de l'égalité précédente, écrire ramètre une variable \mathbf{n} , te des \mathbf{n} premières valeurs de la	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	
Soit $n \in \mathbb{N}$. Que En tirant profi \times prend en pa \times renvoie la lis	es n premières sommes part el lien y a-t-il entre S_n et S_{n+1} de l'égalité précédente, écrire ramètre une variable \mathbf{n} , te des \mathbf{n} premières valeurs de la	sielles de $\sum u_n$? une fonction premS qui : suite (S_n) .	

BCPST-2 2016-2017

II.5.b) Calcul des n premières sommes partielles de $\sum v_n$

▶ Soit $n \in \mathbb{N}$. Quel lien y a-t-il entre T_n et T_{n+1} ?

- ▶ En tirant profit de l'égalité précédente, écrire une fonction premT qui :
 - × prend en paramètre une variable n,
 - \times renvoie la liste des **n** premières valeurs de la suite (S_n) .

On ne devra pas effectuer d'appel à calculTn.

III. La boucle while

III.1. Calcul du premier entier tel qu'une condition est vérifiée

Le problème qui nous intéresse ici est le suivant.

Problème.

Données:

- Une suite (u_n) et une suite (d_n) telle que $d_n \xrightarrow[n \to +\infty]{} 0$.
- L'existence d'un réel α tel que : $\forall n \in \mathbb{N}, |u_n \alpha| \leq d_n$.

But:

- 1) Déterminer un indice N tel que le terme u_N vérifie : $|u_N \alpha| \leq 10^{-4}$.
- 2) En déduire une valeur approchée de α à 10^{-4} près.

III.2. Un exemple classique

On commence par illustrer le problème et sa résolution par l'étude d'une suite de type $u_{n+1} = f(u_n)$ dans le cadre de l'utilisation de l'inégalité des accroissements finis.

On considère la fonction $f: x \mapsto e^{-\frac{x^2}{2}}$ et on définit la suite (u_n) par :

$$\begin{cases} u_0 = \frac{1}{2} \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

BCPST-2

Rappelons les différentes étapes de ce type d'étude. Les démonstrations sont laissées au lecteur.

- 1) En appliquant le théorème de la bijection à la fonction $g: x \mapsto f(x) x$, on démontre que l'équation f(x) = x admet une unique solution dans [0,1], que l'on note α .
- 2) Après avoir démontré que l'intervalle [0,1] est stable par f, on en déduit, par récurrence que : $\forall n \in \mathbb{N}, \ u_n \in [0,1].$
- 3) a) Par étude de la fonction f', on démontre : $\forall x \in [0,1], |f'(x)| \leq \frac{1}{\sqrt{e}}$.
 - b) On est alors dans le cadre de l'application de l'IAF, qui permet de démontrer que :

$$\forall n \in \mathbb{N}, \ |u_{n+1} - \alpha| \leqslant \frac{1}{\sqrt{e}} |u_n - \alpha|$$

(on démontre en fait que $|f(u_n) - f(\alpha)| \leq \frac{1}{\sqrt{e}} |u_n - \alpha|$)

- c) On en déduit que : $\forall n \in \mathbb{N}, |u_n \alpha| \leqslant \left(\frac{1}{\sqrt{e}}\right)^n$.
- d) Comme $\left(\frac{1}{\sqrt{e}}\right)^n \xrightarrow[n \to +\infty]{} 0$, on en déduit que (u_n) est convergente, de limite α .

Le but est alors de calculer une valeur approchée de α à 10^{-4} près.

▶ Quelle condition permet d'assurer que $|u_n - \alpha| \leq 10^{-4}$?

• Écrire un programme permettant d'afficher le premier entier n tel que $\left(\frac{1}{\sqrt{e}}\right)^n \leqslant 10^{-4}$.

L De	miner une formule mathématique donnant le premier entier n tel que $\left(\frac{1}{\sqrt{e}}\right)^n \leqslant 10^{-n}$
	(Ve)
C	arer la valeur obtenue dans la quesiton précédente et celle affichée par le programm
D	eme, donner la formule permettant d'obtenir le premier entier n tel que $\left(\frac{1}{\sqrt{e}}\right)^n \leqslant \varepsilon$
	duire une fonction calcApproch qui prend en paramètre un réel eps et qui renvoie u approchée de α à eps près à l'aide d'une boucle for.