Colles

semaine 4:20 septembre - 25 septembre

I. Questions de cours

Exercice 1

Énoncé et démonstration de la propriété de recouvrement.

Exercice 2

Énoncé et démonstration des propriétés de l'opérateur d'équivalence (en choisir 3).

Exercice 3

Soit (u_n) une suite.

On suppose que :

 \times (u_n) est croissante,

 \times (u_n) est convergente de limite $\ell \in \mathbb{R}$.

Démontrer : $\forall n \in \mathbb{N}, \ u_n \leq \ell$.

II. Autres exercices

Exercice 4

Pour chacune des séries suivantes, justifier la convergence de la série et calculer sa somme.

a.
$$\sum \left(\frac{2}{3}\right)^{2n+1}$$

$$d. \sum \frac{n^2 + 2^n}{n!}$$

$$g. \sum \frac{n(n+3)}{3^{n+2}}$$

b.
$$\sum n \left(\frac{2}{3}\right)^{2n+1}$$

e.
$$\sum \frac{1}{n(n+1)}$$

$$h. \sum \ln \left(\frac{(n+1)(n+2)}{n(n+3)} \right)$$

c.
$$\sum \frac{n^2}{2^n}$$

$$f. \sum \ln \left(1 - \frac{1}{n^2}\right)$$

i.
$$\sum \frac{2n^2 - n + 1}{n!}$$

Exercice 5

Déterminer la nature des séries suivantes, sans chercher à calculer leur somme.

$$a. \sum \frac{\ln(n)}{3^n}$$

d.
$$\sum \frac{n^4}{2^n}$$

$$g. \sum \ln(1 + n e^{-n})$$

b.
$$\sum \frac{\ln(n)}{n^3}$$

e.
$$\sum \frac{\sqrt{n!}}{(n+2)!}$$

$$h. \sum \frac{\sqrt{n} \ln(n)}{n^2 + 1}$$

c.
$$\sum (-1)^n \frac{\ln(n)}{3^n}$$

$$f. \sum \frac{n^3}{\mathrm{e}^{n+1}}$$

$$i. \sum \frac{\sqrt{n} \ln(n)}{n+1}$$

1

Exercice 6

Montrer que pour tout entier naturel n non nul, on a :

$$\frac{1}{(n+1)^2} \leqslant \frac{1}{n} - \frac{1}{n+1} \leqslant \frac{1}{n^2}$$

En déduire que la série $\sum_{n\geqslant 1}\frac{1}{n^2}$ est convergente, et donner un majorant de sa somme.

Exercice 7

Soient $k \in \mathbb{N}^*$ et $(u_n)_{n \in \mathbb{N}}$ une suite de réels positifs.

On définit la suite $(v_n)_{n\in\mathbb{N}}$ par : $\forall n\in\mathbb{N}, \ v_n=\ln\left(1+u_n^k\right)$.

- 1) Supposons que la série $\sum u_n$ converge
 - a. Que peut-on dire de la suite (u_n) ?
 - **b.** Démontrer alors qu'il existe un rang n_0 tel que : $\forall n \ge n_0, \ 0 \le u_n^k \le u_n$.
 - c. En déduire alors la nature de la série $\sum v_n$.
- 2) On se propose d'étudier la réciproque de l'implication précédente.
 - a. On suppose que k=1. Montrer que si la série $\sum v_n$ converge, alors la série $\sum u_n$ converge.
 - **b.** On suppose que k > 1. Donner un exemple de suite (u_n) telle que la série $\sum v_n$ converge et la série $\sum u_n$ diverge.

Exercice 8

- a. Démontrer que la fonction $F: x \mapsto x \ln(x) x$ est une primitive de la fonction $f: x \mapsto \ln(x)$ sur $]0, +\infty[$.
- **b.** Démontrer que : $\forall k \geq 2$, $\int_{k-1}^{k} \ln(t) dt \leq \ln(k) \leq \int_{k}^{k+1} \ln(t) dt$.
- c. En déduire que : $\forall n \geq 2$, $n \ln(n) n \leq \ln(n!) \leq (n+1) \ln(n+1) (n+1)$.
- **d.** En déduire un équivalent simple de ln(n!).
- e. La série $\sum_{n\geq 1} \frac{\ln(n!)}{n^3}$ est-elle convergente?

Exercice 9

1) Étudier les variations de la fonction f définie sur $[0, +\infty[$ par :

$$\forall x \in [0, +\infty[, f(x) = x + e^x]$$

- 2) Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $x + e^x = n$ admet une unique solution dans \mathbb{R}^+ , notée u_n . Préciser la valeur de u_1 .
- 3) a. Démontrer que la suite (u_n) est strictement croissante.
 - **b.** La suite (u_n) est-elle majorée? En déduire la limite de (u_n) .
- 4) a. Montrer que : $\forall n \in \mathbb{N}^*, \ n \ln(n) \leqslant e^{u_n} \leqslant n$.
 - **b.** En déduire que : $u_n \sim \ln(n)$.
- 5) On note $v_n = u_n \ln(n)$.
 - a. Démontrer que : $e^{v_n} = 1 \frac{u_n}{n}$.
 - **b.** En déduire un équivalent simple de v_n .
 - c. Déterminer la nature des séries $\sum_{n\geqslant 1} v_n$ et $\sum_{n\geqslant 1} \frac{v_n}{n}$.

Exercice 10

a. Démontrer que la fonction $F: x \mapsto x(\ln(x))^2 - 2x\ln(x) + 2x$ est une primitive de la fonction $f: x \mapsto (\ln(x))^2$ sur $]0, +\infty[$.

b. Démontrer que :
$$\forall k \ge 2$$
, $\int_{k-1}^{k} (\ln(t))^2 dt \le (\ln(k))^2 \le \int_{k}^{k+1} (\ln(t))^2 dt$.

- c. Soit $n \ge 2$. Déduire de la question précédente un encadrement de $v_n = \sum_{k=2}^n (\ln(k))^2$.
- d. En déduire un équivalent simple de la suite (v_n) .
- e. La série $\sum_{n>1} \left(\frac{v_n}{n^2}\right)^2$ est-elle convergente?

Exercice 11 (d'après ECRICOME 1996)

On désigne par n un entier naturel non nul, et l'on se propose d'étudier les racines de l'équation :

$$(E_n): \ln(x) + x = n$$

À cet effet, on introduit la fonction $f: x \mapsto \ln(x) + x$.

Partie 1 : Existence des racines de (E_n)

- 1) a. Étudier les variations de la fonction f.
 - **b.** Montrer que f est une bijection de \mathbb{R}^{+*} sur \mathbb{R} .
 - c. En déduire que, pour tout entier $n \in \mathbb{N}^*$, (E_n) admet une racine et une seule notée x_n . Démontrer que la suite (x_n) est strictement croissante.
- 2) Donner la valeur de x_1 .
- 3) Montrer que $x_2 \in]1, 2[$.

Partie 2 : Étude de la convergence de (x_n)

- 1) Montrer que : $\forall x \in \mathbb{R}^{+*}$, $\ln(x) < x$.
- 2) Prouver que l'on a : $\forall n \in \mathbb{N}^*, \ \frac{n}{2} \leqslant x_n \leqslant n$.
- 3) Quelle est la limite de (x_n) ?

Partie 3 : Comportement asymptotique de (x_n)

- 1) Montrer que $\frac{\ln(x_n)}{n} \xrightarrow[n \to +\infty]{} 0$. En déduire que : $x_n \sim_{n \to +\infty} n$.
- 2) Calculer la limite de $x_{n+1} x_n$ quand n tend vers $+\infty$.
- 3) On pose : $\forall n \in \mathbb{N}^*, \ u_n = \frac{n x_n}{\ln(n)}$.
 - **a.** Montrer que : $\forall n \in \mathbb{N}^*, \ u_n 1 = \frac{\ln\left(\frac{x_n}{n}\right)}{\ln(n)}.$
 - **b.** Quelle est la limite de (u_n) ?
 - c. Prouver alors que : $1 u_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.
- 4) En déduire qu'il existe une fonction ε ayant une limite nulle en $+\infty$ telle que :

$$\forall n \geqslant 2, \ x_n = n - \ln(n) + \frac{\ln(n)}{n} + \frac{\ln(n)}{n} \varepsilon(n)$$

Exercice 12

On considère la suite (u_n) définie par : $\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + u_n^2 \end{cases}$

- 1) a. Montrer que la suite (u_n) est croissante.
 - **b.** Montrer que la suite (u_n) diverge vers $+\infty$.
- 2) On pose, pour tout entier naturel n, $v_n = \frac{\ln(u_n)}{2^n}$.
 - a. Montrer que pour tout t > 0: $\ln(1+t) \le t$.
 - **b.** Montrer que, pour tout $n \in \mathbb{N} : 0 \leqslant v_{n+1} v_n \leqslant \frac{1}{2^{n+1} \eta_{-}}$.
 - c. Montrer que la série de terme général $v_{n+1} v_n$ est convergente.
 - **d.** En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ converge. On note ℓ sa limite.
- 3) a. Montrer, à l'aide de la question 2b, que :

$$\forall n \in \mathbb{N}, \forall p \in \mathbb{N}, \ 0 \leqslant v_{n+p+1} - v_n \leqslant \frac{1}{2^n u_n}$$

- **b.** Montrer que, pour $n \in \mathbb{N}$: $0 \le \ell v_n \le \frac{1}{2^n u_n}$.
- c. En déduire que $u_n \sim_{n \to +\infty} e^{2^n \ell}$

Exercice 13

Soit la suite
$$(u_n)$$
 définie par :
$$\begin{cases} u_0 \geqslant 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$
 où $f: x \mapsto x^2 + \frac{2}{x}$.

- 1) Prouver par récurrence que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n \geqslant 1$.
- 2) Quel est le sens de variation de (u_n) ?
- 3) Prouver par l'absurde que la suite (u_n) ne converge pas.
- 4) Écrire une fonction Scilab prenant en paramètre un entier m et un réel init (correspondant à valeur de u_0) et renvoyant la valeur de u_m .

Exercice 14

- 1) Étudier la fonction f définie sur $[0, +\infty[$, par $f(x) = \frac{4}{3+x}$.
- 2) On considère la suite (u_n) définie par : $\begin{cases} u_0 = a \in \mathbb{R}^{+*} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{4}{3 + u_n} \end{cases}$
 - a. Montrer que la suite (u_n) est bien définie. (on pourra montrer au passage que : $\forall n \in \mathbb{N}, u_n \geq 0$)
 - **b.** Déterminer le seul point fixe ℓ de la fonction f.
 - c. Montrer que pour tout $x \ge 0$, $|f'(x)| \le \frac{4}{6}$.
 - **d.** Montrer que pour tout $n \in \mathbb{N}$, $|u_n \ell| \leqslant \left(\frac{4}{9}\right)^n |a \ell|$.
 - e. Conclure quant à la convergence de la suite (u_n) .
- 3) Écrire une fonction Scilab prenant en paramètre un entier m et un réel a (correspondant à valeur de u_0) et renvoyant la valeur de u_m .

Exercice 15 (EML 2015)

Partie II: Étude d'une suite

On considère l'application $f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) = x^3 e^x$, et la suite réelle $(u_n)_{n \in \mathbb{N}}$ définie par : $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- 1. Montrer: $\forall n \in \mathbb{N}, u_n \geqslant 1$.
- 2. Établir que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 3. Quelle est la limite de u_n lorsque l'entier n tend vers l'infini?

Partie III: Étude d'une série

- 4. Montrer que la série $\sum_{n\geqslant 1}\frac{1}{f(n)}$ converge. On note $S=\sum_{n=1}^{+\infty}\frac{1}{f(n)}$.
- 5. Montrer: $\forall n \in \mathbb{N}^*, \mid S \sum_{k=1}^n \frac{1}{f(k)} \mid \leqslant \frac{1}{(e-1)e^n}.$
- 6. En déduire une fonction en Scilab qui calcule une valeur approchée de S à 10^{-4} près.

Exercice 16 (EML 2016)

On considère l'application $f:[0,+\infty[\to\mathbb{R}$ définie, pour tout t de $[0,+\infty[$, par :

$$f(t) = \begin{cases} t^2 - t \ln(t) & \text{si } t \neq 0 \\ 0 & \text{si } t = 0 \end{cases}$$

On admet: $0, 69 < \ln(2) < 0, 70.$

Partie I : Étude de la fonction f

- 1. Montrer que f est continue sur $[0, +\infty[$.
- 2. Justifier que f est de classe C^2 sur $]0, +\infty[$ et calculer, pour tout t de $]0, +\infty[$, f'(t) et f''(t).
- 3. Dresser le tableau des variations de f. On précisera la limite de f en $+\infty$.
- 4. On note C la courbe représentative de f dans un repère orthonormal $(0, \vec{i}, \vec{j})$.
 - a) Montrer que C admet une tangente en 0 et préciser celle-ci.
 - b) Montrer que C admet un point d'inflexion et un seul, noté I, et préciser les coordonnées de I.
 - c) Tracer l'allure de C.
- 5. Montrer que l'équation f(t) = 1, d'inconnue $t \in [0, +\infty[$, admet une solution et une seule et que celle-ci est égale à 1.

Partie III: Étude d'une suite récurrente

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=\frac{1}{2}$ et $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$.

- **6.** Montrer: $\forall n \in \mathbb{N}, u_n \in \left[\frac{1}{2}, 1\right].$
- 7. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 8. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite. (on pourra étudier les variations de la fonction $t\mapsto t-\ln(t)$)
- 9. Écrire un programme en Scilab qui calcule et affiche un entier naturel N tel que $1 u_N < 10^{-4}$.

ECE2-B

Exercice 17 (ESCP 2005)

- 1. Quelle est la nature des séries $\sum_{n\geq 0} \frac{1}{n+1}$ et $\sum_{n\geq 0} \frac{1}{(n+1)^2}$?
- 2. Écrire une fonction **Scilab** qui prend en paramètre un entier \mathbf{n} et renvoie $S_{\mathbf{n}} = \sum_{k=0}^{\mathbf{n}} \frac{1}{(k+1)^2}$, somme partielle d'ordre \mathbf{n} de la série $\sum_{n\geqslant 0} \frac{1}{(n+1)^2}$.
- 3. On note $(a_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs, décroissante et de limite nulle. Pour tout entier naturel n, on pose :

$$u_n = \sum_{k=0}^{2n} (-1)^k a_k, \quad v_n = \sum_{k=0}^{2n+1} (-1)^k a_k, \quad s_n = \sum_{k=0}^n (-1)^k a_k$$

- a) Montrer que la suite (u_n) est décroissante, et que la suite (v_n) est croissante.
- b) Montrer, pour tout n de \mathbb{N} : $v_n \leq u_n$. En déduire que la suite (u_n) admet une limite s et que la suite (v_n) admet la même limite s.
- c) En déduire que la suite (s_n) converge vers s.
- 4. Montrer que la série $\sum_{n\geq 0} (-1)^n a_n$ est convergente.
- 5. Montrer que la série $\sum_{n\geq 0} \frac{(-1)^n}{n+1}$ est convergente. On note $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1}$ sa somme.
- **6.** a) Établir, pour tout réel t positif et pour tout n de \mathbb{N}^* , l'égalité :

$$\sum_{k=0}^{n-1} (-1)^k t^k = \frac{1}{1+t} - (-1)^n \frac{t^n}{1+t}$$

b) En déduire, pour tout n de \mathbb{N}^* :

$$\sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} = \ln(2) - (-1)^n \int_0^1 \frac{t^n}{1+t} dt$$

c) Démontrer, pour tout $n \in \mathbb{N}^*$:

$$\left| \int_0^1 \frac{t^n}{1+t} \ dt \right| \le \frac{1}{n+1}$$

d) En déduire la valeur de $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1}$.

Exercice 18 (EML 2021)

On considère la fonction φ définie sur] $-\infty,1]$ par :

$$\forall x \in]-\infty, 1], \quad \varphi(x) = \begin{cases} x + (1-x) \ln(1-x) & \text{si } x < 1 \\ 1 & \text{si } x = 1 \end{cases}$$

Partie A : Étude de la fonction φ

- 1. Montrer que la fonction φ est continue sur $]-\infty,1]$.
- 2. a) Justifier que φ est de classe \mathcal{C}^1 sur $]-\infty,1[$ et calculer, pour tout $x\in]-\infty,1[$, $\varphi'(x)$.
 - b) En déduire les variations de φ sur $]-\infty,1].$
 - c) La fonction φ est-elle dérivable en 1?
- 3. Calculer la limite de φ en $-\infty$.
- 4. Tracer l'allure de la courbe représentative de φ en soignant le tracé aux voisinages de 0 et 1.
- 5. a) À l'aide d'une intégration par parties, montrer que l'intégrale $\int_0^1 t \ln(t) dt$ converge et calculer sa valeur.
 - b) En déduire : $\int_0^1 \varphi(x) dx = \frac{1}{4}$.

Partie B : Étude de deux séries

Soit x un réel appartenant à [0,1].

- **6.** a) Vérifier, pour tout n de \mathbb{N}^* et tout t de $[0,x]: \frac{1}{1-t} \sum_{k=0}^{n-1} t^k = \frac{t^n}{1-t}$.
 - **b)** En déduire, pour tout n de \mathbb{N}^* : $-\ln(1-x) \sum_{k=1}^n \frac{x^k}{k} = \int_0^x \frac{t^n}{1-t} dt$.
- 7. Montrer, pour tout $n \text{ de } \mathbb{N}^* : 0 \leqslant \int_0^x \frac{t^n}{1-t} dt \leqslant \frac{1}{(n+1)(1-x)}$.

En déduire la limite de $\int_0^x \frac{t^n}{1-t} dt$ lorsque l'entier n tend vers $+\infty$.

- 8. Montrer alors que la série $\sum_{n\geq 1} \frac{x^n}{n}$ converge et que l'on a : $\sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x)$.
- 9. a) Déterminer deux réels a et b tels que : $\forall n \in \mathbb{N}^*, \frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1}$.
 - **b)** En déduire que la série $\sum_{n\geqslant 1}\frac{x^{n+1}}{n\,(n+1)}$ converge et que l'on a : $\sum_{n=1}^{+\infty}\frac{x^{n+1}}{n\,(n+1)}=\varphi(x)$.
- 10. Montrer que la série $\sum_{n\geq 1} \frac{1}{n(n+1)}$ converge et que l'on a encore : $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \varphi(1)$.

7

Exercice 19 (EML 2019)

On considère la fonction f définie sur $]0, +\infty[$ par :

$$\forall t \in]0, +\infty[, \ f(t) = t + \frac{1}{t}$$

PARTIE A: Étude d'une fonction d'une variable

- 1. Étudier les variations de la fonction f sur $]0, +\infty[$. Dresser le tableau de variations de f en précisant les limites en 0 et $+\infty$.
- 2. Montrer que f réalise une bijection de $[1, +\infty[$ vers $[2, +\infty[$.

On note $g:[2,+\infty[\to [1,+\infty[$ la bijection réciproque de la restriction de f à $[1,+\infty[$.

- 3. a) Dresser le tableau de variations de g.
 - b) Justifier que la fonction g est dérivable sur $]2, +\infty[$.
 - c) Soit $y \in [2, +\infty[$. En se ramenant à une équation du second degré, résoudre l'équation f(t) = y d'inconnue $t \in [0, +\infty[$. En déduire une expression de g(y) en fonction de y.

PARTIE C: Étude d'une suite

On introduit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$u_1 = 1$$
 et $\forall n \in \mathbb{N}^*, \ u_{n+1} = u_n + \frac{1}{n^2 u_n} = \frac{1}{n} f(n u_n)$

- 8. Montrer que, pour tout n de \mathbb{N}^* , u_n existe et $u_n \geqslant 1$.
- 9. Recopier et compléter les lignes $\underline{3}$ et $\underline{4}$ de la fonction **Scilab** suivante afin que, prenant en argument un entier n de \mathbb{N}^* , elle renvoie la valeur de u_n .

```
function u=suite(n)
u = 1
for k = ...
u = ...
end
endfunction
```

- 10. On pose, pour tout n de \mathbb{N}^* , $v_n = u_{n+1} u_n$.
 - a) Montrer: $\forall n \in \mathbb{N}^*, \ 0 \leqslant v_n \leqslant \frac{1}{n^2}$.
 - **b)** En déduire la nature de la série $\sum_{n\geqslant 1}v_n$.
 - c) Calculer, pour tout n supérieur ou égal à 2, $\sum_{k=1}^{n-1} v_k$. En déduire que la suite $(u_n)_{n \in \mathbb{N}^*}$ converge vers un réel ℓ , que l'on ne cherchera pas à déterminer.
- 11. a) Montrer que, pour tout entier k supérieur ou égal à 2, on $a:\frac{1}{k^2}\leqslant \int_{k-1}^k\frac{1}{t^2}\,dt$.

b) Pour tous entiers n et p tels que $2 \leq p < n$, calculer $\sum_{k=p}^{n-1} v_k$ et en déduire :

$$0 \leqslant u_n - u_p \leqslant \int_{p-1}^{n-1} \frac{1}{t^2} dt$$

- c) En déduire, pour tout entier n supérieur ou égal à $3: u_2 \leq u_n \leq 1 + u_2$. Montrer alors que ℓ appartient à l'intervalle [2,3].
- d) Montrer, pour tout entier p supérieur ou égal à 2 :

$$0 \leqslant \ell - u_p \leqslant \frac{1}{p-1}$$

e) En déduire une fonction Scilab qui renvoie une valeur approchée de ℓ à 10^{-4} près.

Exercice 20 (EML 1998)

La fonction logarithme népérien est notée ln .

- 1. Soit $x \in [-1; 1[$.
 - a) Montrer, pour tout n de \mathbb{N} et tout t de [-1;1[:

$$\frac{1}{1-t} - \sum_{k=0}^{n} t^k = \frac{t^{n+1}}{1-t}$$

b) En déduire, pour tout n de \mathbb{N} et tout t de [-1;x]:

$$\left| \frac{1}{1-t} - \sum_{k=0}^{n} t^k \right| \leqslant \frac{|t|^{n+1}}{1-x}$$

c) Établir, pour tout $n ext{ de } \mathbb{N}$:

$$\left| -\ln(1-x) - \sum_{k=0}^{n} \frac{x^{k+1}}{k+1} \right| \le \frac{1}{(n+2)(1-x)}$$

d) En déduire que la série $\sum_{n\geqslant 1}\frac{x^n}{n}$ converge et a pour somme $-\ln(1-x)$.

En particulier, montrer : $\sum_{k=1}^{+\infty} \frac{1}{k 2^k} = \ln(2)$.

- e) Écrire un programme Scilab qui calcule et affiche une valeur approchée de ln(2) à 10^{-3} près.
- 2. Un joueur lance une pièce équilibrée jusqu'à l'obtention du premier pile. S'il lui a fallu n lancers $(n \in \mathbb{N}^*)$ pour obtenir ce premier pile, on lui fait alors tirer au hasard un billet de loterie parmi n billets dont un seul est gagnant.

Quelle est la probabilité que le joueur gagne?

ECE2-B

Exercice 21 (EML 2010)

On note $f: \mathbb{R} \to \mathbb{R}$ l'application de classe C^2 , définie, pour tout $x \in \mathbb{R}$, par :

$$f(x) = x - \ln(1 + x^2)$$

et \mathcal{C} la courbe représentative de f dans un repère orthonormé. On donne la valeur approchée : $\ln(2) \approx 0,69$.

Partie I : Étude de f et tracé de $\mathcal C$

- 1. a) Calculer, pour tout $x \in \mathbb{R}$, f'(x).
 - b) En déduire le sens de variation de f.
 - c) Calculer, pour tout $x \in \mathbb{R}$, f''(x).
- 2. Déterminer la limite de f en $-\infty$ et la limite de f en $+\infty$.
- 3. Montrer que \mathcal{C} admet deux points d'inflexion dont on déterminera les coordonnées.
- 4. Tracer \mathcal{C} . On utilisera un repère orthonormé d'unité graphique 2 centimètres, et on précisera la tangente à \mathcal{C} en l'origine et en chacun des points d'inflexion.
- 5. Calculer $\int_0^1 x f(x) dx$.

A cet effet, on pourra utiliser le changement de variable défini par $t = 1 + x^2$.

Partie II : Étude d'une suite et d'une série associées à f

On considère la suite $(u_n)_{n\geqslant 0}$ définie par $u_0=1$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$$

- **6.** Montrer que $(u_n)_{n\geq 0}$ est décroissante.
- 7. Établir que la suite $(u_n)_{n\geq 0}$ converge et déterminer sa limite.
- 8. Écrire un programme en Scilab qui calcule et affiche un entier n tel que $u_n \leq 10^{-3}$.
- **9.** a) Établir : $\forall x \in [0; 1], \ f(x) \leqslant x \frac{1}{2}x^2.$
 - **b)** En déduire : $\forall n \in \mathbb{N}, \ u_n^2 \leqslant 2 \ (u_n u_{n+1}).$
 - c) Démontrer que la série $\sum_{n\geq 0} u_n^2$ converge.

2021-2022

Exercice 22 (EDHEC 2018 - voie S)

- 1. Pour tout entier $n \ge 2$, on pose $a_n = \frac{1}{n \ln(n)}$.
 - a) Montrer: $\forall k \geqslant 2$, $\int_{k}^{k+1} \frac{1}{t \ln(t)} dt \leqslant \frac{1}{k \ln(k)}$.
 - b) En déduire, par sommation, la nature de la série de terme général a_n .

Dans la suite, on considère la fonction f définie par :

$$f: x \mapsto \begin{cases} \frac{-x}{(1-x)\ln(1-x)} & \text{si } x \in]-\infty, 0[\ \cup\]0, 1[\\ 1 & \text{si } x = 0 \end{cases}$$

- 2. a) Montrer que f est continue sur $]-\infty,1[$.
 - b) Montrer que f est dérivable en 0 et donner la valeur de f'(0).
- 3. a) Montrer que f est dérivable sur $]-\infty,0[$ et sur]0,1[, puis calculer f'(x) pour tout réel x de $]-\infty,0[$ \cup]0,1[.
 - b) Étudier le signe de la quantité $\ln(1-x) + x$, lorsque x appartient à $]-\infty,1[$, puis en déduire les variations de f.
 - c) Déterminer les limites de f aux bornes de son ensemble de définition, puis dresser son tableau de variation.
- **4.** a) Établir que, pour tout n de \mathbb{N}^* , il existe un seul réel de [0,1[, noté u_n , tel que $f(u_n)=n$ et donner la valeur de u_1 .
 - **b)** Montrer que la suite (u_n) converge et que $\lim_{n\to +\infty} u_n = 1$.
 - c) Pour tout $n \in \mathbb{N}^*$, calculer $f\left(1 \frac{1}{n\sqrt{n}}\right)$ puis en déduire qu'il existe un entier $n_0 \in \mathbb{N}$ tel que :

$$\forall n \geqslant n_0, \ u_n \leqslant 1 - \frac{1}{n\sqrt{n}}$$

- d) En déduire, à l'aide de la première question, que la série de terme général $\frac{1}{-n\ln(1-u_n)}$ est divergente.
- e) Conclure, en revenant à la définition de u_n , que la série de terme général $1-u_n$ est divergente.

Exercice 23 (EDHEC 2013 - voie S)

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels strictement positifs telle que $\sum \frac{1}{a_n}$ converge.

Le but de cet exercice est de démontrer que la série de terme général $u_n = \frac{n}{a_1 + \ldots + a_n}$ converge également et que, de plus :

$$\sum_{n=1}^{+\infty} u_n \leqslant 2 \sum_{n=1}^{+\infty} \frac{1}{a_n}$$

1. Étude d'un exemple

Pour tout entier $n \in \mathbb{N}^*$, on pose $a_n = n(n+1)$.

- a) Pour tout $n \in \mathbb{N}^*$, vérifier : $\frac{1}{a_n} = \frac{1}{n} \frac{1}{n+1}$, puis en déduire que la série $\sum \frac{1}{a_n}$ converge et donner sa somme.
- b) Pour tout $n \in \mathbb{N}^*$, déterminer u_n en fonction de n.
- c) Établir la convergence de la série $\sum u_n$ et donner sa somme puis établir l'inégalité demandée.

2. Étude d'un deuxième exemple

Pour tout entier $n \in \mathbb{N}^*$, on pose $a_n = n!$.

- a) Établir la convergence de la série $\sum \frac{1}{a_n}$.
- **b)** Montrer: $\forall n \in \mathbb{N}^*, \ u_n \leqslant \frac{1}{(n-1)!}$
- c) En déduire que la série $\sum u_n$ converge et établir l'inégalité demandée.

On revient maintenant au cas général.

3. (ADMIS)

Montrer, grâce à l'inégalité de Cauchy-Schwarz :

$$\forall n \in \mathbb{N}^*, \ (1 + \ldots + n)^2 \leqslant (a_1 + \ldots + a_n) \ \left(\frac{1}{a_1} + \frac{4}{a_2} + \ldots + \frac{n^2}{a_n}\right)$$

4. a) Utiliser le résultat précédent pour établir :

$$\forall n \in \mathbb{N}^*, \ \frac{2n+1}{a_1 + \ldots + a_n} \leqslant 4 \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \sum_{k=1}^n \frac{k^2}{a_k}$$

- **b)** En déduire, par sommation : $\forall N \in \mathbb{N}^*, \sum_{n=1}^N \frac{2n+1}{a_1+\ldots+a_n} \leqslant 4 \sum_{k=1}^N \frac{1}{a_k}$.
- c) Montrer enfin que la série $\sum \frac{2n+1}{a_1+\ldots+a_n}$ converge puis établir le résultat demandé.

Exercice 24 (ECRICOME 2019)

Partie B

Pour tout entier n non nul, on note h_n la fonction définie sur \mathbb{R}_+^* par :

$$\forall x > 0, \ h_n(x) = f(x^n, 1) = x^n + 1 + \frac{1}{x^n}$$

- 3. Démontrer que pour tout entier naturel n non nul, la fonction h_n est strictement décroissante sur [0,1[et strictement croissante sur $[1,+\infty[$.
- 4. En déduire que pour tout entier n non nul, l'équation $h_n(x) = 4$ admet exactement deux solutions, notées u_n et v_n et vérifiant : $0 < u_n < 1 < v_n$.
- 5. a) Démontrer :

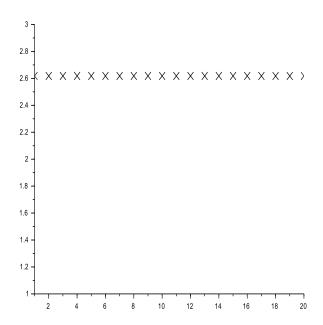
$$\forall x > 0, \ \forall n \in \mathbb{N}^*, \ h_{n+1}(x) - h_n(x) = \frac{(x-1)(x^{2n+1}-1)}{x^{n+1}}$$

- **b)** En déduire : $\forall n \in \mathbb{N}^*, \ h_{n+1}(v_n) \geqslant 4.$
- c) Montrer alors que la suite (v_n) est décroissante.
- **6.** a) Démontrer que la suite (v_n) converge vers un réel ℓ et montrer : $\ell \geqslant 1$.
 - b) En supposant que $\ell > 1$, démontrer : $\lim_{n \to +\infty} v_n^n = +\infty$. En déduire une contradiction.
 - c) Déterminer la limite de (v_n) .
- 7. a) Montrer: $\forall n \geq 1, v_n \leq 3$.
 - b) Écrire une fonction Scilab d'en-tête function y = h(n,x) qui renvoie la valeur de $h_n(x)$ lors-qu'on lui fournit un entier naturel n non nul et un réel $x \in \mathbb{R}_+^*$ en entrée.
 - c) Compléter la fonction suivante pour qu'elle renvoie une valeur approchée à 10^{-5} près de v_n par la méthode de dichotomie lorsqu'on lui fournit un entier $n \ge 1$ en entrée :

d) À la suite de la fonction v, on écrit le code suivant :

```
1  X = 1:20
2  Y = zeros(1,20)
3  for k = 1:20
4   Y(k) = v(k) ^ k
5  end
6  plot2d(X, Y, style=-2, rect=[1,1,20,3])
```

À l'exécution du programme, on obtient la sortie graphique suivante :



Expliquer ce qui est affiché sur le graphique ci-dessus.

Que peut-on conjecturer?

- e) Montrer: $\forall n \geqslant 1, \ (v_n)^n = \frac{3 + \sqrt{5}}{2}.$
- f) Retrouver ainsi le résultat de la question 4.c).