Colles

semaine 25:24 mars - 29 mars - PCSI

Questions de cours

Exercice 1

- 1. Énoncé et démonstration de la formule de Taylor pour les polynômes.
- 2. Que peut-on dire du degré de la somme de deux polynômes? Du produit de deux polynômes?

Exercice 2

- 1. Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme $P(X) = X^4 + 2$.
- 2. a) Relations coefficients / racines pour un polynôme scindé de degré 3.
 - b) Application : soit $a \in [0,1]$. Déterminer le signe des racines du polynôme P défini par : $P(X) = X^2 4X + 3a$.

Exercice 3

Soit $P \in \mathbb{K}[X]$. Soit $\alpha \in \mathbb{K}$.

- 1. Démontrer : α racine de $P \Leftrightarrow (X \alpha) \mid P$.
- 2. Factorisation en polynômes irréductibles dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$.

Exercices

Factorisation de polynômes

Exercice 4

Factoriser le polynôme $P(X) = X^4 - 6X^2 + 7X - 6$, sachant qu'il admet deux racines évidentes.

Exercice 5

Factoriser dans $\mathbb{R}[X]$ le polynôme $X^{2n} + X^n + 1$.

Exercice 6

Factoriser dans $\mathbb{R}[X]$ le polynôme $6X^4 - 43X^3 + 107X^2 - 108X36$ sachant qu'il existe $(\alpha, \beta) \in (\mathbb{R}^*)^2$ tel que ses racines soient $\alpha, \beta, \frac{\alpha}{\beta}, \frac{\beta}{\alpha}$.

Liens entre coefficients et racines d'un polynôme

Exercice 7

Soient x, y, z les racines complexes du polynome $X^3 + pX^2 + qX + r$, où $(p, q, r) \in \mathbb{C}^2 \times \mathbb{C}^*$.

- 1. Donner les relations entre les racines et les coefficients du polynôme.
- 2. Calculer $x^n + y^n + z^n$ pour $n \in \{1, 2, -1\}$.
- 3. Former le polynôme unitaire de degré 3 dont les racines sont x^2, y^2, z^2 (on exprimera ses coefficients en fonction de p, q, et r.)

Exercice 8

Factoriser $8X^3 - 12X^2 - 2X + 3$ sachant que ses racines sont en progression arithmétique.

Exercice 9

Soit $n \in \mathbb{N}^*$.

- 1. Démontrer : $\sum_{p=0}^{n-1} X^{2p} = \prod_{p=1}^{n-1} \left(X^2 2 \cos \left(\frac{p\pi}{n} \right) X + 1 \right)$.
- 2. En déduire des expressions sans produit de $\prod_{p=1}^{n-1} \cos\left(\frac{p\pi}{n}\right)$ et $\prod_{p=1}^{n} \sin\left(\frac{p\pi}{2n}\right)$.

Exercice 10

Résoudre dans $(\mathbb{C}^*)^3$ le système :

$$\begin{cases} a + b + c = 1 \\ a^2 + b^2 + c^2 = 9 \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1 \end{cases}$$

Racines carrées, racines $n^{\text{ème}}$

Exercice 11

Déterminer les racines carrées des nombres complexes suivants.

a)
$$1 + 2i$$

d)
$$\sqrt{3} e^{i\frac{\pi}{6}}$$

b)
$$-3 - 3i$$

e)
$$2 + 3i$$

c)
$$5-4i$$

$$f) e^{i\frac{\pi}{4}} - e^{i\frac{\pi}{6}}$$

Exercice 12

Soit $n \in \mathbb{N}^*$. Déterminer les racines $n^{\text{ème}}$ des nombres complexes suivants.

a)
$$1 + i$$

c)
$$1 - j + j^2$$

d)
$$\frac{1+z}{1-z}$$
 avec $z \in \mathbb{U} \setminus \{1\}$

Exercice 13

Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$z^2 = -1 + i\sqrt{3}$$

b)
$$z^2 = 7 - 7i$$

c)
$$z^5 = 1$$

2

On cherchera les solutions sous forme trigonométrique.

Exercice 14

Soit $\theta \in]0, 2\pi[$. Résoudre dans \mathbb{C} l'équation : $\left(\frac{z+1}{z-1}\right)^5 = e^{i\theta}$.

Exercice 15

- 1. Écrire les nombres complexes -i et $\frac{-4}{1+i\sqrt{3}}$ sous forme trigonométrique.
- 2. Résoudre dans \mathbb{C} les équations suivantes.

a)
$$z^5 = -i$$

b)
$$z^6 = \frac{-4}{1 + i\sqrt{2}}$$

Résolution d'équations

Exercice 16

Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$.

1.
$$z^2 + 2iz - 1 = 0$$

2.
$$iz^2 + (1+i)z = 2$$

3.
$$z^5 - 4 = 0$$

4.
$$z^4 + 2i = 0$$

5.
$$z^2 + 2\cos\left(\frac{\pi}{11}\right)z + 1 = 0$$

6.
$$z^6 - z^3 + 1 = 0$$

7.
$$z^6 - 3z = 0$$

8.
$$z^8 = \left(\frac{1-i}{\sqrt{3}-i}\right)^3$$

9.
$$iz^2 - 3z + 2 = 0$$

10.
$$z^4 - 30z^2 + 289 = 0$$

Exercice 17

On considère le polynôme P défini par :

$$P(X) = X^3 - 6X^2 + 13X - 10$$

- 1. Calculer P(2) et en déduire une factorisation de P.
- 2. Déterminer les racines complexes de P.

Exercice 18

Donner la forme algébriques des solutions complexes des équations suivantes :

(1)
$$z^2 + 2(i-1)z + 8 - 2i = 0$$

(3)
$$z^3 + 2z^2 + 2z + 1 = 0$$

(2)
$$z^4 - 3iz^2 + i - 3 = 0$$

(4)
$$z^2 + 3(i-1)z + 2 - 3i = 0$$

Exercice 19

Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$z^2 + z + 1 = 0$$

b)
$$z^2 - 2z + 5 = 0$$

Exercice 20

Soit $(n, \alpha) \in \mathbb{N}^* \times \mathbb{R}$. Donner la forme trigonométrique des solutions complexes des équations suivantes :

(1)
$$z^4 - 2\sin(\alpha)z^2 + (\tan(\alpha))^2 = 0$$

(4)
$$z^6 + (1-2i)z^3 = i+1$$

(2)
$$z^2 - 2i\sin(\alpha)z + 2(1 + \cos(\alpha)) = 0$$

(5)
$$z^{2n} + 2\cos(\alpha)z^n + 1 = 0$$

(3)
$$(z+1)^n = z^n$$

(6)
$$(z^2+1)^n=1$$

Exercice 21

Soit n un entier naturel supérieur ou égal à 2. On considère l'équation :

(E)
$$(z^3+1)^{n-1}+(z^3+1)^{n-2}+\cdots+(z^3+1)^2+(z^3+1)+1=0$$

d'inconnue complexe z. On note S l'ensemble des solutions de l'équation (E). Dans tout cet exercice, on ne cherchera pas spécialement à mettre les résultats sous forme algébrique ou trigonométrique.

- 1. Pour tout $k \in [0, n-1]$, déterminer l'ensemble S_k des racines cubiques de $e^{\frac{2ik\pi}{n}} 1$.
- 2. Montrer que, pour tout $z \in \mathbb{C}^*$, le complexe z est solution de (E) si et seulement si $(z^3+1)^n-1=0$.
- 3. Résoudre l'équation (E).

Exercice 22

Résoudre dans \mathbb{C} l'équation suivante : $z^4 - (5 - 14i) z^2 - 2 (5i + 12) = 0$.

Exercice 23

Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation : $(z+1)^n = (z-1)^n$.

Combien de solutions compte cette équation?

Exercice 24

Déterminer l'ensemble des solutions du système d'équation d'inconnue complexe z:

$$\begin{cases}
|z| &= 1 \\
iz &= \bar{z}
\end{cases}$$

Exercice 25

Déterminer l'ensemble des solutions de l'équation d'inconnue complexe z:

$$4z^2 + 8|z|^2 - 3 = 0$$

Indication: on pourra remarquer que, pour tout $z \in \mathbb{C}$, $8|z|^2 - 3$ est un réel.

Exercice 26

Déterminer l'ensemble des solutions de l'équation d'inconnue complexe z:

$$z^5 + \bar{z}^5 + z^7 = 0$$

Exercice 27

Déterminer l'ensemble des complexes z tels que :

$$\begin{cases} |z| &= |z+2| \\ \arg(z) &= \arg(z+3+i) [2\pi] \end{cases}$$

Indication : on pourra mener une analyse géométrique du problème.