Colles

semaine 26:31 mars - 04 avril - PCSI

Questions de cours

Exercice 1

1. Démontrer que l'ensemble F suivant est un \mathbb{K} -espace vectoriel.

$$F = \{ P \in \mathbb{K}[X] \mid P(X) - X P'(X) = 0_{\mathbb{K}[X]} \}$$

2. Que peut-on dire du degré de la somme de deux polynômes? Du produit de deux polynômes?

Exercice 2

- 1. Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme $P(X) = X^4 + 2$.
- 2. a) Relations coefficients / racines pour un polynôme scindé de degré 3.
 - b) Application : soit $a \in [0,1]$. Déterminer le signe des racines du polynôme P défini par : $P(X) = X^2 - 4X + 3a$.

Exercice 3

1. Démontrer que la famille \mathcal{F} suivante est une famille libre de $\mathbb{R}_3[X]$.

$$((X-1)(X-2)(X-3), X(X-2)(X-3), X(X-1)(X-3), X(X-1)(X-2))$$

2. Démontrer que l'ensemble :

$$\left\{ \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} \mid (a, b) \in \mathbb{R}^2 \right\}$$

est un \mathbb{R} -espace vectoriel.

Exercices

Factorisation de polynômes

Exercice 4

Factoriser le polynôme $P(X) = X^4 - 6X^2 + 7X - 6$, sachant qu'il admet deux racines évidentes.

Exercice 5

Factoriser dans $\mathbb{R}[X]$ le polynôme $X^{2n} + X^n + 1$.

Exercice 6

Factoriser dans $\mathbb{R}[X]$ le polynôme $6X^4 - 43X^3 + 107X^2 - 108X36$ sachant qu'il existe $(\alpha, \beta) \in (\mathbb{R}^*)^2$ tel que ses racines soient $\alpha, \beta, \frac{\alpha}{\beta}, \frac{\beta}{\alpha}$.

Liens entre coefficients et racines d'un polynôme

Exercice 7

Soient x, y, z les racines complexes du polynome $X^3 + pX^2 + qX + r$, où $(p, q, r) \in \mathbb{C}^2 \times \mathbb{C}^*$.

- 1. Donner les relations entre les racines et les coefficients du polynôme.
- **2.** Calculer $x^n + y^n + z^n$ pour $n \in \{1, 2, -1\}$.
- 3. Former le polynôme unitaire de degré 3 dont les racines sont x^2, y^2, z^2 (on exprimera ses coefficients en fonction de p, q, et r.)

Exercice 8

Factoriser $8X^3 - 12X^2 - 2X + 3$ sachant que ses racines sont en progression arithmétique.

Exercice 9

Soit $n \in \mathbb{N}^*$.

1. Démontrer :
$$\sum_{p=0}^{n-1} X^{2p} = \prod_{p=1}^{n-1} \left(X^2 - 2 \cos \left(\frac{p\pi}{n} \right) X + 1 \right)$$
.

2. En déduire des expressions sans produit de
$$\prod_{p=1}^{n-1} \cos\left(\frac{p\pi}{n}\right)$$
 et $\prod_{p=1}^{n} \sin\left(\frac{p\pi}{2n}\right)$.

Exercice 10

Résoudre dans $(\mathbb{C}^*)^3$ le système :

$$\begin{cases} a + b + c = 1 \\ a^2 + b^2 + c^2 = 9 \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1 \end{cases}$$

Résolution d'équations

Exercice 11

Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$.

1.
$$z^2 + 2iz - 1 = 0$$

2.
$$iz^2 + (1+i)z = 2$$

3.
$$z^5 - 4 = 0$$

4.
$$z^4 + 2i = 0$$

5.
$$z^2 + 2\cos\left(\frac{\pi}{11}\right)z + 1 = 0$$

6.
$$z^6 - z^3 + 1 = 0$$

7.
$$z^6 - 3z = 0$$

8.
$$z^8 = \left(\frac{1-i}{\sqrt{3}-i}\right)^3$$

9.
$$iz^2 - 3z + 2 = 0$$

10.
$$z^4 - 30z^2 + 289 = 0$$

Exercice 12

On considère le polynôme P défini par :

$$P(X) = X^3 - 6X^2 + 13X - 10$$

- 1. Calculer P(2) et en déduire une factorisation de P.
- 2. Déterminer les racines complexes de P.

Donner la forme algébrique des solutions complexes des équations suivantes :

(1)
$$z^2 + 2(i-1)z + 8 - 2i = 0$$

(3)
$$z^3 + 2z^2 + 2z + 1 = 0$$

(2)
$$z^4 - 3iz^2 + i - 3 = 0$$

(4)
$$z^2 + 3(i-1)z + 2 - 3i = 0$$

Exercice 14

Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$z^2 + z + 1 = 0$$

b)
$$z^2 - 2z + 5 = 0$$

Exercice 15

Soit $(n, \alpha) \in \mathbb{N}^* \times \mathbb{R}$. Donner la forme trigonométrique des solutions complexes des équations suivantes :

(1)
$$z^4 - 2\sin(\alpha)z^2 + (\tan(\alpha))^2 = 0$$

(4)
$$z^6 + (1-2i)z^3 = i+1$$

(2)
$$z^2 - 2i\sin(\alpha)z + 2(1+\cos(\alpha)) = 0$$

(5)
$$z^{2n} + 2\cos(\alpha)z^n + 1 = 0$$

(3)
$$(z+1)^n = z^n$$

(6)
$$(z^2+1)^n=1$$

Exercice 16

Soit n un entier naturel supérieur ou égal à 2. On considère l'équation :

$$(E) (z3 + 1)n-1 + (z3 + 1)n-2 + \dots + (z3 + 1)2 + (z3 + 1) + 1 = 0$$

d'inconnue complexe z. On note \mathcal{S} l'ensemble des solutions de l'équation (E). Dans tout cet exercice, on ne cherchera pas spécialement à mettre les résultats sous forme algébrique ou trigonométrique.

- 1. Pour tout $k \in [0, n-1]$, déterminer l'ensemble S_k des racines cubiques de $e^{\frac{2ik\pi}{n}} 1$.
- 2. Montrer que, pour tout $z \in \mathbb{C}^*$, le complexe z est solution de (E) si et seulement si $(z^3+1)^n-1=0$.
- 3. Résoudre l'équation (E).

Exercice 17

Résoudre dans \mathbb{C} l'équation suivante : $z^4 - (5 - 14i) z^2 - 2(5i + 12) = 0$.

Exercice 18

Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation : $(z+1)^n = (z-1)^n$.

Combien de solutions compte cette équation?

Exercice 19

Déterminer l'ensemble des solutions du système d'équation d'inconnue complexe z:

$$\begin{cases} |z| &= 1 \\ iz &= \bar{z} \end{cases}$$

Exercice 20

Déterminer l'ensemble des solutions de l'équation d'inconnue complexe z:

$$4z^2 + 8|z|^2 - 3 = 0$$

Indication: on pourra remarquer que, pour tout $z \in \mathbb{C}$, $8|z|^2 - 3$ est un réel.

Déterminer l'ensemble des solutions de l'équation d'inconnue complexe z:

$$z^5 + \bar{z}^5 + z^7 = 0$$

Exercice 22

Déterminer l'ensemble des complexes z tels que :

$$\begin{cases} |z| &= |z+2| \\ \arg(z) &= \arg(z+3+i) [2\pi] \end{cases}$$

Indication : on pourra mener une analyse géométrique du problème.

Sous-espaces vectoriels

Exercice 23

Pour chacun des espaces vectoriels E et des parties F, dire si F est un sous-espace vectoriel de E.

a) E est l'ensemble des fonctions \mathbb{R} dans \mathbb{R} (= $\mathcal{F}(\mathbb{R}, \mathbb{R})$).

 ${\cal F}$ est l'ensemble des fonctions paires.

b) E est l'ensemble des suites réelles.

F est l'ensemble des suites divergentes.

c) E est l'ensemble des suites réelles.

F est l'ensemble des suites convergentes.

d) $E = \mathcal{F}(\mathbb{R}, \mathbb{R}).$

F est l'ensemble des fonctions f vérifiant $\lim_{x\to +\infty} \frac{f(x)}{x} = 0$.

(autrement dit, des fonctions f telles que $f(x) = \underset{x \to +\infty}{o}(x)$).

e) $E = \mathbb{R}[X]$, ensemble des polynômes.

F est l'ensemble contenant le polynôme nul et les polynômes de degré supérieur ou égal à 3.

f) $E = \mathbb{C}^{\mathbb{N}}$, ensemble des suites à coefficients complexes.

 $F = \{(u_n) \in \mathbb{C}^{\mathbb{N}} \mid \text{la série } \sum u_n \text{ est divergente} \}.$

g) $E = \mathbb{C}^{\mathbb{N}}$, ensemble des suites à coefficients complexes.

 $F = \{(u_n) \in \mathbb{C}^{\mathbb{N}} \mid \text{la série } \sum u_n \text{ est convergente} \}.$

h) $E = \mathbb{C}^{\mathbb{N}}$, ensemble des suites à coefficients complexes.

 $F = \{(u_n) \in \mathbb{C}^{\mathbb{N}} \mid \text{la série } \sum u_n \text{ est absolument convergente} \}.$

i) $E = \mathbb{C}^{\mathbb{N}}$, ensemble des suites à coefficients complexes.

 $F = \{(u_n) \in \mathbb{C}^{\mathbb{N}} \mid \text{la série } \sum u_n \text{ est à termes positifs} \}.$

Espaces vectoriels dans \mathbb{K}^n

Exercice 24

Déterminer une base et la dimension des sev de \mathbb{R}^3 suivants :

- a) $F_1 = \{(x, y, z) \in \mathbb{K}^3 \mid 2x + y z = 0\}.$
- b) $F_2 = \{(x, y, z) \in \mathbb{K}^3 \mid -x y + z = 0 \text{ et } 2x + y 5z = 0\}.$
- c) Compléter la base de F_1 en une base de \mathbb{K}^3 .
- d) Compléter la base de F_2 en une base de \mathbb{K}^3 .

Espace vectoriel défini par un système d'équations linéaires

Exercice 25

- 1. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^3 ?
 - a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y 3z = 0\}$
 - **b)** $B = \{(x+y, x-y, 2y) \in \mathbb{R}^3 \mid (x,y) \in \mathbb{R}^2\}$
 - c) $C = \{(2x 3y, x + 1, -x + 3y) \in \mathbb{R}^3 \mid (x, y) \in \mathbb{R}^2\}$
 - **d)** $D = \{(x, y, z) \in \mathbb{R}^3 \mid 2x = y \text{ et } y = 3z\}.$
- 2. Soit A une matrice carrée d'ordre n, à coefficients réels.

Montrer que l'ensemble des solutions de l'équation $AX = 0_{\mathcal{M}_{n,1}(\mathbb{R})}$, d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{R})$, est un espace vectoriel réel.

3. Soit $n \in \mathbb{N}^*$. L'ensemble $H = \{(x_1, x_2, \dots, x_n) \in \mathbb{C}^n \mid x_1 + x_2 + \dots + x_n = 0\}$ est-il un espace vectoriel réel?

Exercice 26

Donner une base du sous espace vectoriel de \mathbb{R}^4 formé des solutions (x, y, z, t) du système suivant.

$$\begin{cases} x + 2y - t & = 0 \\ x - 3y & + 9z = 0 \\ 3x - 4y - t + 18z = 0 \end{cases}$$

Espaces vectoriels de polynômes

Exercice 27

a) Soit $n \in \mathbb{N}$. Montrer que la famille :

$$(X, X(X-1), X(X-1)(X-2), \ldots, X(X-1)\ldots(X-n))$$

est une famille libre de $\mathbb{R}[X]$.

On peut généraliser le résultat obtenu dans la question précédente. On dit qu'une famille finie de polynôme (P_1, P_2, \ldots, P_n) est **échelonnée en degré** lorsque les polynômes P_1, P_2, \ldots, P_n sont de degrés deux à deux distintes.

b) Montrer, par récurrence sur $n \in \mathbb{N}^*$, que toute famille de n polynômes non nuls et de degrés echelonnés est libre dans $\mathbb{R}[X]$.

(quitte à renuméroter les polynômes, on pourra supposer : $\deg(P_1) < \deg(P_2) < \ldots < \deg(P_n)$)

Exercice 28

Déterminer si les ensembles suivants sont des espaces vectoriels.

Si oui, en donner une base et la dimension.

- a) $H_1 = \{ P \in \mathbb{R}_2[X] \mid 2P(X) XP'(X) = 0 \}.$
- **b)** $H_2 = \{ P \in \mathbb{R}_4[X] \mid P(X) + 5P'(X) + 3X = 0 \}.$
- c) $H_3 = \{ P \in \mathbb{R}_2[X] \mid P(0) = 2P(1) \}.$
- d) $H_4 = \{ P \in \mathbb{R}_3[X] \mid P(1) = 0 \}.$
- e) $H_5 = \{ P \in \mathbb{R}_3[X] \mid P(0) = 1 \}.$
- $f) H_6 = \{ P \in \mathbb{R}[X] \mid P'(0) = 0 \}.$
- g) $H_7 = \{ P \in \mathbb{R}_2[X] \mid P(X) (X 1)P'(X) = (2X^2 3X + 4)P''(X) \}.$
- h) $H_8 = \{ P \in \mathbb{R}[X] \mid \deg(P) \geqslant 3 \}$

On considère l'espace vectoriel $\mathbb{R}_3[X]$.

- a) Montrer que $(1, 1 + X, (1 + X)^2, (1 + X)^3)$ en est une base.
- b) Quelles sont les coordonnées de X^3 dans cette base?
- c) Montrer que : ((X-1)(X-2)(X-3), X(X-2)(X-3), X(X-1)(X-3), X(X-1)(X-2)) est aussi une base.
- d) Quelles sont les coordonnées de X^3 dans cette base?

Exercice 30

Soit $n \in \mathbb{N}^*$.

On note $(X^{n-k}(1-X)^k)_{0 \le k \le n}$ la famille de vecteurs de $\mathbb{R}_n[X]$ suivante :

$$(X^n, X^{n-1}(1-X), X^{n-2}(1-X)^2, \dots, X(1-X)^{n-1}, (1-X)^n)$$

- a) Montrer que cette famille forme une base de $\mathbb{R}_n[X]$.
- **b**) Déterminer les coordonnées de 1 et de $\left(X \frac{1}{2}\right)^n$ dans cette base.

Espaces vectoriels de suites

Exercice 31

On considère E l'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ telle que, pour tout $n\in\mathbb{N}$, $u_{n+2}=u_{n+1}+2u_n$.

- a) Montrer que E est un espace vectoriel réel.
- b) Montrer que $((2^n)_{n\in\mathbb{N}}, ((-1)^n)_{n\in\mathbb{N}})$ forme une famille libre de E.
- c) En déduire la dimension de E.

Exercice 32

- 1. Montrer que $E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+3} = u_{n+2} 2u_n\}$ est un espace vectoriel réel.
- 2. Parmi les ensembles suivants, quels sont ceux qui ont une structure d'espace vectoriel réel? Justifier votre réponse.
 - a) L'ensemble des suites réelles à termes positifs.
 - b) L'ensemble des suites réelles bornées.
 - c) L'ensemble des suites réelles convergentes.
 - d) L'ensemble des suites réelles divergentes.
 - e) L'ensemble des suites $(u_n)_{n\in\mathbb{N}}$ telle que la série $\sum u_n$ converge.

Exercice 33

Soit
$$E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+3} = \frac{3}{4}u_{n+2} + \frac{3}{2}u_{n+1} + u_n\}.$$

- 1. Montrer que E est un \mathbb{C} -espace vectoriel et déterminer sa dimension.
- 2. Déterminer la dimension de l'ensemble des éléments de E ayant pour limite 0.

Espaces vectoriels de fonctions

Exercice 34

- a) Montrer que $E = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R}, f'(x) = f(x) \}$ est un espace vectoriel réel.
- **b**) Montrer que $F = \left\{ f \in \mathcal{C}^0([0,1],\mathbb{R}) \mid \int_0^1 f(t) dt = 0 \right\}$ est un espace vectoriel réel.

On considère l'espace vectoriel des fonctions définies sur \mathbb{R}^{+*} à valeurs réelles.

On définit les fonctions f_1, f_2, f_3, f_4 et f_5 par :

$$\forall x \in \mathbb{R}^{+*}, \ f_1(x) = \ln(x), \ f_2(x) = x, \ f_3(x) = e^x, \ f_4(x) = e^{x+3}, \ f_5(x) = \frac{1}{x}$$

- a) La famille $(f_1, f_2, f_3, f_4, f_5)$ est-elle une famille libre de l'espace vectoriel des fonctions de \mathbb{R}_+^* dans \mathbb{R} ?
- b) Déterminer une base de Vect $(f_1, f_2, f_3, f_4, f_5)$.

Exercice 36

On note \mathscr{F} l'espace vectoriel réel des applications de $\mathbb R$ dans $\mathbb R$.

On note $\mathscr C$ l'ensemble des fonctions définies et continues sur $\mathbb R$, à valeurs réelles.

- a) Montrer que $\mathscr C$ est un espace vectoriel réel.
- **b)** Pour tout $n \in \mathbb{N}$, on note f_n la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ f_n(x) = e^{nx}$$

Montrer que pour tout $n \in \mathbb{N}$, la famille (f_0, f_1, \dots, f_n) est libre dans \mathscr{C} .

En déduire que l'espace vectoriel $\mathscr C$ n'est pas de dimension finie.

c) En déduire que l'espace vectoriel \mathscr{F} n'est pas de dimension finie.

Espaces vectoriels de matrices

Exercice 37

Déterminer si les sous-ensembles suivants sont des sous-espaces vectoriels de l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$ des matrices réelles carrées d'ordre 2.

a)
$$A = \left\{ \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \in \mathscr{M}_2(\mathbb{R}) \mid a = 2c \right\}$$

b)
$$B = \left\{ \left(\begin{array}{cc} x & 2x - y \\ y & x + 2y \end{array} \right) \mid (x, y) \in \mathbb{R}^2 \right\}$$

c)
$$C = \left\{ \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R}) \mid a+b=1 \right\}$$