Colles

semaine 31:19 mai - 24 mai - PCSI

I. Questions de cours

Exercice 1

1. Soient E et F des \mathbb{K} -espaces vectoriels.

Soit $f \in \mathcal{L}(E, F)$.

Démontrer : L'application f injective $\Leftrightarrow \operatorname{Ker}(f) = \{0_E\}.$

2. Soient E, F et G des \mathbb{K} -espaces vectoriels.

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

Démontrer que $g \circ f$ est linéaire. On précisera les ensembles de départ et d'arrivée.

Exercice 2

1. Soient E et F des \mathbb{K} -espaces vectoriels.

On suppose que E est de dimension finie p et on note $\mathscr{B} = (e_1, \ldots, e_p)$ une base de E. Soit $f \in \mathscr{L}(E, F)$.

- a) Que signifie que l'application f est entièrement déterminée par sa valeur sur \mathscr{B} ?
- b) En particulier, comment peut-on écrire Im(f)?
- 2. Soient E et F des \mathbb{K} -espaces vectoriels.

Soit $f \in \mathcal{L}(E, F)$.

Démontrer que Ker(f) est un espace vectoriel.

Exercice 3

1. Soient E et F des \mathbb{K} -espaces vectoriels.

Soit $f \in \mathcal{L}(E, F)$.

Démontrer que Im(f) est un espace vectoriel.

2. Définition et caractérisation des projecteurs et symétries.

II. Exercices

Noyau et image d'une application linéaire

Exercice 4

Soit
$$f: \mathcal{M}_{3,1}(\mathbb{R}) \to \mathbb{R}$$
 telle que $f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 + 2x_2 + 5x_3$.

Montrer que f est linéaire, puis déterminer Ker(f) et Im(f).

Exercice 5

Soit
$$f: \mathcal{M}_{n,1}(\mathbb{R}) \to \mathbb{R}$$
 telle que $f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i$.

Montrer que f est linéaire, puis déterminer Ker(f) et Im(f), avec une base pour chacun.

Exercice 6

Soit $\varphi : \mathbb{R}[X] \to \mathbb{R}[X]$ telle que $\varphi(P) = P'$.

Montrer que φ est linéaire, puis déterminer $\operatorname{Ker}(\varphi)$ et $\operatorname{Im}(\varphi)$, avec une base pour chacun.

Exercice 7

Soit $f: \mathcal{M}_{4,1}(\mathbb{R}) \to \mathcal{M}_{4,1}(\mathbb{R})$ telle que $\operatorname{Ker}(f) = \mathcal{M}_{4,1}(\mathbb{R})$. Que dire de l'application f?

Exercice 8

Soit
$$f: \mathcal{M}_{2,1}(\mathbb{R}) \to \mathcal{M}_{2,1}(\mathbb{R})$$
 telle que $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ -x-y \end{pmatrix}$.

Montrer que f est linéaire, puis déterminer Ker(f) et Im(f), ainsi qu'une base pour chacun. Que conclure?

Exercice 9

On définit une fonction $f: \mathcal{M}_{2,1}(\mathbb{R}) \to \mathcal{M}_{2,1}(\mathbb{R})$ en posant :

$$f\binom{x}{y} = \binom{x+y}{x-y}$$

- 1. Démontrer que f est linéaire.
- 2. Étudier l'injectivité de f, puis la surjectivité de f.
- 3. Déterminer si elle existe la bijection réciproque de f.

Exercice 10

Soient $A \in \mathcal{M}_n(\mathbb{R})$ une matrice et $f: \mathcal{M}_{n,1}(\mathbb{R}) \to \mathcal{M}_{n,1}(\mathbb{R})$ l'application linéaire définie par f(X) = AX. On suppose A inversible.

Démontrer que f est bijective et que f^{-1} est l'application linéaire $\mathcal{M}_{n,1}(\mathbb{R}) \to \mathcal{M}_{n,1}(\mathbb{R})$ définie par $f^{-1}(Y) = A^{-1}Y$.

Exercice 11. Endomorphisme et commutant

- 1. Soient E et F deux espaces vectoriels et $f \in \mathcal{L}(E,F)$. Montrer que le noyau $\mathrm{Ker}(f)$ de f est un sev de E.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice fixée.

On considère l'application $c_A: M \in \mathscr{M}_n(\mathbb{R}) \mapsto AM - MA$.

- a) Montrer qu c_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- b) On note $C_A = \{M \in \mathcal{M}_n(\mathbb{R}) \mid AM = MA\}$ le commutant de la matrice A. Déduire des questions précédentes que C_A est un sev de $\mathcal{M}_n(\mathbb{R})$.
- c) Dans cette question, n=2 et $A=\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$. Déterminer une base de $\operatorname{Ker}(c_A)$ et sa dimension.

Exercice 12. Composition

Soient E un espace vectoriel et f un automorphisme de E. On considère :

$$\Phi: \begin{cases} \mathscr{L}(E) & \to & \mathscr{L}(E) \\ g & \mapsto & f \circ g \circ f^{-1} \end{cases}$$

- 1. Montrer que Φ est un endomorphisme de $\mathcal{L}(E)$.
- 2. En recherchant une application réciproque sous la même forme que Φ , montrer que Φ est un automorphisme de $\mathcal{L}(E)$.

Exercice 13

On considère les matrices $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ et $U = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- 2. Calculer AU puis en déduire Ker(A).
- **2.** Calculer AU puls en deduire Ker(A)

Exercice 14

On considère l'application $f: \begin{array}{ccc} \mathbb{R}_3[X] & \to & \mathbb{R}_3[X] \\ P & \mapsto & Q(X) = P(X+1) - P(X) \end{array}$

- 1. Montrer que f est linéaire.
- 2. Soit $P \in \mathbb{R}_0[X]$. Calculer f(P). f est-elle injective?
- 3. Déterminer une base de l'image de f. f est-elle surjective?
- 4. Déterminer un polynôme de $\mathbb{R}_3[X]$ n'ayant pas d'antécédent par f.

Exercice 15

On considère l'application linéaire

$$g: \begin{array}{ccc} \mathbb{R}^4 & \to & \mathbb{R}^3 \\ (x, y, z, t) & \mapsto & (2x + y + z, x + y + t, x + z - t) \end{array}$$

- 1. Déterminer une base du noyau de g.
- 2. Déterminer une base de l'image de g en utilisant le théorème du rang.

Exercice 16

On considère les matrices $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ et on note f l'application

$$\mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$$
 $f: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{a+d}{2} \cdot I + \frac{b+c}{2} \cdot J$

- 1. Calculer f(I) et f(J).
- 2. Montrer que f est un endomorphisme.
- 3. Déterminer une base du noyau de f. f est-elle injective?
- 4. En déduire le rang de f puis une base de l'image de f.

Exercice 17

E désigne un espace vectoriel sur \mathbb{R} , rapporté à une base $\mathscr{B}=(e_1,e_2,e_3)$. Pour tout réel a, on considère l'endomorphisme f_a de E défini par

$$f_a(e_2) = 0$$
 et $f_a(e_1) = f_a(e_3) = ae_1 + e_2 - ae_3$

- 1. Déterminer une base de $\text{Im}(f_a)$.
- 2. Montrer qu'une base de $Ker(f_a)$ est $(e_2, e_1 e_3)$.

Exercice 18

Soit E un espace vectoriel et f un endomorphisme de E.

- 1. Montrer que $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$ et que $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$.
- 2. Démontrer l'équivalence suivante :

$$\operatorname{Ker}(f) = \operatorname{Ker}(f^2) \iff \operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}$$

Isomorphisme

Exercice 19. Isomorphismes

Montrer que les applications suivantes sont des isomorphismes.

1.
$$f: \mathbb{R}^4 \to \mathbb{R}^4$$

 $(x,y,z,t) \mapsto (x-t,y+z,y-z,x+t)$

2.
$$f: \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R}_2[X] \\ P & \mapsto & P+P' \end{array}$$

3.
$$f: \begin{array}{ccc} \mathscr{M}_2(\mathbb{R}) & \to & \mathscr{M}_2(\mathbb{R}) \\ M & \mapsto & TMT \end{array}$$
 avec $T \in \mathscr{M}_2(\mathbb{R})$ inversible.

4.
$$f: \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R}^3 \\ P & \mapsto & (P(0), P'(1), P''(0)) \end{array}$$

Exercice 20

- 1. Soit $n \in \mathbb{N}^*$. On pose : $E = \{ P \in \mathbb{R}_n[X] \mid P(0) = 0 \}$.
 - a) Montrer que E est un sous-espace vectoriel de E dont on déterminera la dimension.
 - b) Vérifier alors que l'application suivante est un isomorphisme d'espaces vectoriels.

$$\varphi : E \to \mathbb{R}_{n-1}[X]$$

$$P \mapsto P(X+1) - P(X)$$

2. On pose $Q_0(X) = 1$ et, pour tout $n \in \mathbb{N}^*$: $Q_{n+1} = \varphi^{-1}(Q_n)$. Montrer que la famille (Q_0, Q_1, \dots, Q_n) est une base de $\mathbb{R}_n[X]$.

Exercice 21

Soit $n \in \mathbb{N}$. Soit $(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$ deux à deux distincts et P un polynôme réel de degré n.

- 1. Montrer que $(P, P', \dots, P^{(n)})$ est une base de $\mathbb{R}_n[X]$.
- 2. a) Démontrer que l'application suivante est un isomorphisme d'espaces vectoriels.

$$\varphi : \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$$

$$P \mapsto (P(a_0), P(a_1), \dots, P(a_n))$$

b) Soit $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$. Supposons :

$$\forall i \in [0, n], \quad \sum_{k=0}^{n} \lambda_k P^{(i)}(a_k) = 0$$

Démontrer : $\forall i \in [0, n], \lambda_i = 0.$

3. Démontrer que la famille $(P(X + a_0), \dots, P(X + a_n))$ est une base de $\mathbb{R}_n[X]$.

Exercice 22

Soit E un \mathbb{K} -espace vectoriel de dimension n.

Soit $f \in \mathcal{L}(E)$ tel que : $f^n = 0_{\mathcal{L}(E)}$ et $f^{n-1} \neq 0_{\mathcal{L}(E)}$.

On note $\mathcal C$ l'ensemble des endomorphismes de E qui commutent avec f.

- 1. Montrer qu'il existe $a \in E$ tel que : $f^{(n-1)}(a) \neq 0_E$. En déduire que la famille $(a, f(a), \dots, f^{n-1}(a))$ est une base de E.
- 2. a) Démontrer que \mathcal{C} est un sous-espace vectoriel de $\mathscr{L}(E)$.
 - b) Démontrer que l'application suivante est un isomorphisme d'espaces vectoriels.

$$\varphi : \mathcal{C} \to E$$

$$q \mapsto q(a)$$

- c) Que dire de la dimension de C?
- 3. Démontrer : $C = \text{Vect}(\text{id}_E, f, f^2, \dots, f^{n-1}).$

Exercice 23

Démontrer que l'application suivante est un isomorphisme d'espaces vectoriels.

$$\varphi : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

$$P \mapsto P + P' + P''$$

Exercice 24

Soient A et B deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie. On considère l'application :

$$\begin{array}{cccc} f & : & A \times B & \rightarrow & E \\ & (x,y) & \mapsto & x+y \end{array}$$

- 1. Montrer que l'application f est linéaire et déterminer son image et son noyau.
- 2. Montrer que $A \cap B$ et Ker(f) sont isomorphes (en tant qu'espaces vectoriels).
- 3. Déduire du théorème du rang :

$$\dim(A+B) = \dim(A) + \dim(B) - \dim(A \cap B)$$

Généralités sur les applications linéaires

Exercice 25

Soient E, F et G trois \mathbb{K} -espaces vectoriels de dimensions finies.

- 1. Soient $f \in \mathcal{L}(E, F)$, $g_1, g_2 \in \mathcal{L}(F, G)$, et $h_1, h_2 \in \mathcal{L}(G, E)$.
 - a) Montrer que si f est injective et si $f \circ h_1 = f \circ h_2$ alors $h_1 = h_2$.
 - **b)** Montrer que si f est surjective et si $g_1 \circ f = g_2 \circ f$, alors $g_1 = g_2$.
- 2. Application.

Soient
$$A \in \mathcal{M}_{3,2}(\mathbb{R})$$
 et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telles que $AB = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$.

Calculer $(AB)^2$ et en déduire BA.

Exercice 26

Soit E un \mathbb{K} -espace vectoriel.

Soit $n \in \mathbb{N}^*$ et soient F_1, \ldots, F_n des sous-espaces supplémentaires de E.

Pour tout $i \in [1, n]$, on note p_i la projection sur F_i parallèlement à $\bigoplus F_k$.

- 1. Montrer:
 - (i) $id_E = p_1 + p_2 + \cdots + p_n$

(ii)
$$\forall (i,j) \in [1,n]^2, i \neq j \implies p_i \circ p_j = 0$$

- 2. Soient p_1, \ldots, p_n des endomorphismes de E vérifiant (i) et (ii). On note $F_i = \operatorname{Im}(p_i)$.
 - a) Montrer: $E = \bigoplus_{i=1}^{n} F_i$.
 - **b**) Montrer que pour tout $i \in [1, n]$, l'application p_i est la projection sur F_i parallèlement à $\bigoplus_{k \neq i} F_k$.

Exercice 27

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie.

Soit V un sous-espace vectoriel de E.

On note
$$\mathcal{A} = \{ f \in \mathcal{L}(E, F) \mid V \subset \operatorname{Ker}(f) \}.$$

Montrer que \mathcal{A} est un \mathbb{K} -espace vectoriel et calculer sa dimension.

Exercice 28

Soit $(a, n) \in \mathbb{R} \times \mathbb{N}^*$. On considère l'application :

$$f: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

$$P \mapsto (X-a) \left(P'(X) + P'(a)\right) - 2 \left(P(X) - P(a)\right)$$

- 1. Montrer que f est bien définie, puis que c'est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Soit $P \in \mathbb{R}_n[X]$. On note (a_0, a_1, \dots, a_n) ses coordonnées dans la base $(1, X a, \dots, (X a)^n)$.
 - a) Démontrer : $f(P) = \sum_{i=0}^{n} (i-2) a_i (X-a)^i$.
 - b) En déduire le noyau et l'image de f.
- 3. a) En utilisant directement la définition de f, calculer, pour tout $i \in [0, n]$, $f((X a)^i)$.
 - b) Retrouver alors les résultats de la question 2.

Exercice 29

Soit $(u, v) \in (\mathcal{L}(E))^2$. Supposons : $v \circ u = 0_{\mathcal{L}(E)}$ et u + v injectif.

Démontrer : rg(u) + rg(v) = dim(E).

Exercice 30

Soit $u \in \mathcal{L}(E)$. Supposons que u est de rang 1.

Démontrer qu'il existe $\lambda \in \mathbb{K}$ tel que : $u \circ u = \lambda \cdot u$.

Exercice 31

Soit $n \in [2, +\infty[$. Soient E_0, \ldots, E_n des \mathbb{K} -espaces vectoriels de dimension finie et (u_0, \ldots, u_{n-1}) un élément de $\mathscr{L}(E_0, E_1) \times \mathscr{L}(E_1, E_2) \times \cdots \times \mathscr{L}(E_{n-1}, E_n)$ tel que u_0 soit injective, u_{n-1} soit surjective et, pour tout $i \in [0, n-2]$: $\mathrm{Im}(u_i) = \mathrm{Ker}(u_{i+1})$. Démontrer:

$$\sum_{i=0}^{n} (-1)^{i} \dim(E_{i}) = 0$$

Exercice 32

Soit E un \mathbb{K} -espace vectoriel de dimension supérieure ou égale à 2. Soit $f \in \mathcal{L}(E)$.

1. On suppose que f laisse stable toutes les droites vectorielles de E.

On désigne par (e_1, \ldots, e_n) une base de E.

- a) Vérifier que, pour tout $i \in [1, n]$, il existe $\lambda_i \in \mathbb{K}$ tel que : $f(e_i) = \lambda_i e_i$.
- b) Démontrer que, pour tout $(i,j) \in [1,n]^2$, $e_i + e_j$ est colinéaire à $f(e_i + e_j)$.
- c) Montrer alors que les λ_i sont égaux.
- d) En déduire qu'il existe $\lambda \in \mathbb{K}$ tel que : $f = \lambda \cdot \mathrm{id}_E$.
- 2. Supposons: $\forall g \in \mathcal{L}(E), f \circ g = g \circ f$. Démontrer qu'il existe alors $\lambda \in \mathbb{K}$ tel que : $f = \lambda \cdot \mathrm{id}_E$.

Formes linéaires et hyperplans

Exercice 33

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies.

Soit $u \in \mathcal{L}(E, F)$ surjective.

Soit H un sous-espace vectoriel de F.

Montrer que si H est un hyperplan de F, alors $u^{-1}(H)$ (sous-espace vectoriel de E) est un hyperplan de E.

Exercice 34

Soient E un \mathbb{K} -espace vectoriel de dimension $n \geq 2$.

Soit $p \in \mathbb{N}^*$ et soient $\varphi_1, \ldots, \varphi_p$ des formes linéaires sur E linéairement indépendantes. Pour tout $j \in [1, p]$, on note : $H_j = \text{Ker}(\varphi_j)$.

- 1. Justifier que les espaces H_1, \ldots, H_p sont des hyperplans deux à deux distincts de E.
- 2. On considère l'application :

$$\varphi : E \to \mathbb{K}^p$$

$$x \mapsto (\varphi_1(x), \dots, \varphi_p(x))$$

- a) Justifier que φ est linéaire, surjective et de noyau $H_1 \cap \cdots \cap H_p$.
- b) En déduire : $\dim(H_1 \cap \cdots \cap H_p) = n p$.

Exercice 35

Soit E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

Soit
$$\mathscr{B} = (e_1, \ldots, e_n) \in E^n$$
.

On suppose: $\forall f \in \mathcal{L}(E, \mathbb{K}), f(e_1) = \cdots = f(e_n) = 0_E \implies f = 0_{\mathcal{L}(E, \mathbb{K})}$

Montrer que \mathcal{B} est une base de E.

Exercice 36

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

1. Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de E.

Pour tout $i \in [\![1,n]\!]$, on note e_i^* l'application qui à tout $x \in E$ associe la i-ème coordonnée de x dans \mathscr{B} .

Montrer que la famille $\mathscr{B}^* = (e_1^*, \dots, e_n^*)$ est une base de $\mathscr{L}(E, \mathbb{K})$.

- 2. Soit $C = (\psi_1, \dots, \psi_n)$ une base de $\mathcal{L}(E, \mathbb{K})$.
 - a) Montrer que l'application :

$$\psi : E \to \mathbb{K}^n$$

$$x \mapsto (\psi_1(x), \dots, \psi_n(x))$$

est un isomorphisme.

b) En déduire qu'il existe une base $\mathscr{B} = (e_1, \dots, e_n)$ de l'espace vectoriel E telle que $\mathcal{C} = \mathscr{B}^*$.

Exercice 37

Pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, on appelle **trace** de M, et on note $\operatorname{tr}(M)$, la somme des coefficients diagonaux de M.

- 1. a) Montrer: $\operatorname{tr} \in \mathscr{L}(\mathscr{M}_n(\mathbb{C}), \mathbb{C})$.
 - b) Montrer: $\forall (M,N) \in \mathscr{M}_n(\mathbb{C})^2$, $\operatorname{tr}(MN) = \operatorname{tr}(NM)$.
- 2. Soit $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{C}), \mathbb{C})$.
 - a) Montrer qu'il existe une unique $A \in \mathcal{M}_n(\mathbb{C})$ telle que :

$$\forall M \in \mathcal{M}_n(\mathbb{C}), \ \varphi(M) = \operatorname{tr}(AM)$$

b) On suppose de plus : $\forall (M,N) \in (\mathcal{M}_n(\mathbb{C}))^2$, $\varphi(MN) = \varphi(NM)$. Montrer qu'il existe $\lambda \in \mathbb{C}$ tel que $\varphi = \lambda \cdot \text{tr}$.