Colles

semaine 17:15 janvier - 20 janvier

Questions de cours

Exercice 1

Inégalité de Cauchy-Schwarz (formule et démonstration).

Exercice 2

Expression des coordonnées et du produit scalaire en base orthonormale (énoncé et démonstration).

Exercice 3

Soit E un espace préhilbertien RÉEL.

Soit F un sous-espace vectoriel de E.

On suppose que F est de dimension finie $m \in \mathbb{N}^*$.

Démontrer (par analyse-synthèse) : $E = F \oplus F^{\perp}$.

Exercice 4

Soit E un espace préhilbertien RÉEL. Soit $x \in E$.

Soit F un sous-espace vectoriel de E.

On suppose que F est de dimension finie $m \in \mathbb{N}^*$.

On note p_F la projection orthogonale sur F.

- 1. Qu'appelle-t-on distance de x à F? (donner la définition, pas la caractérisation).
- 2. Démontrer: $\forall x \in E, \forall y \in F, \|x p_F(x)\| \le \|x y\|$.
- 3. Démontrer : $\forall x \in E, \ d(x, F) = ||x p_F(x)||$.

Autres exercices

Exercice 5

Soit E un espace préhilbertien RÉEL.

Soit F un sous-espace vectoriel de E.

On suppose : $E = F \oplus F^{\perp}$.

Démontrer $(F^{\perp})^{\perp} = F$.

Exercice 6

On pose, pour $n \in \mathbb{N}$, $A_n = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} t^n e^{-t^2} dt$.

 $\text{Pour tout } (P,Q) \in \left(\mathbb{R}[X]\right)^2 \text{, on pose } \varphi(P,Q) = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} \ P(t) \ Q(t) \ \mathrm{e}^{-t^2} \ dt.$

- 1. Calculer A_n en distinguant deux cas selon la parité de n. Donnée : $A_0 = 1$.
- 2. Vérifier que φ est un produit scalaire sur $\mathbb{R}[X]$.
- 3. Calculer $d(X^3, \mathbb{R}_2[X])$.

Exercice 7

Soit
$$E = \mathcal{C}^0([0,1])$$
. On pose, pour $(f,g) \in E \times E$, $\langle f,g \rangle = \int_0^1 f(t) \ g(t) \ t^2 \ dt$.

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire.
- 2. Calculer $\int_0^1 t^n \ln(t) dt$ pour tout $n \in \mathbb{N}$.
- 3. Soit $F = \{x \mapsto ax + b \mid a, b \in \mathbb{R}\}$ et $u \in E$ telle que $u(x) = x \ln(x)$ pour tout $x \in]0,1]$. Déterminer le projeté orthogonal de u sur F.
- 4. Déterminer $\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 (at+b-t\ln(t))^2 t^2 dt$.

Exercice 8

On munit l'espace $E = \mathbb{R}_3[X]$ du produit scalaire défini par $\langle P, Q \rangle = \int_{-1}^1 \ P(x) \ Q(x) \ dx$.

Soit
$$F = \{ P \in E \mid \langle X^2 - 1, P' \rangle = \langle X, P \rangle \}$$
 et $Q = 1 + X + X^2 + X^3$.

- 1. Vérifier que l'on définit bien ainsi un produit scalaire sur E.
- 2. Vérifier que $F = \text{Vect}(X)^{\perp}$.
- 3. Déterminer d(Q, F).

Exercice 9

On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de sa structure euclidienne canonique.

Soit
$$A = (a_{i,j}) \in \mathscr{M}_n(\mathbb{R})$$
 définie par $a_{i,i} = -1$ et $a_{i,j} = \frac{1}{n-1}$ si $i \neq j$.

- 1. Vérifier que pour tous $(X,Y) \in \mathcal{M}_{n,1}(\mathbb{R}) \times \mathcal{M}_{n,1}(\mathbb{R}), \langle X | AY \rangle = \langle AX | Y \rangle.$
- 2. En déduire que Ker(A) et Im(A) sont supplémentaires orthogonaux.
- 3. Déterminer Ker(A) et Im(A) et retrouver le résultat précédent.

Exercice 10

Soit
$$E = \mathscr{C}^1([0,1], \mathbb{R})$$
.

1. Démontrer que l'application $\langle \cdot, \cdot \rangle$ définie ci-dessous est un produit scalaire :

$$\forall (f,g) \in E \times E, \langle f,g \rangle = f(0) g(0) + \int_0^1 f'(t) g'(t) dt$$

est un produit sclaire sur E.

- 2. Soit e_0 la fonction constante égale à 1 sur [0,1]. Soit $F = \text{Vect } (e_0)$.
 - a) Déterminer F^{\perp} .
 - b) Démontrer : $(F^{\perp})^{\perp} = F$.

Exercice 11

Soit E un espace euclidien et soient p et q deux projecteurs orthogonaux de E.

Démontrer que les propositions suivantes sont équivalentes :

- (i) $\operatorname{Im}(p) \subset \operatorname{Im}(q)$
- (ii) $\forall x \in E, \|p(x)\| \leq \|q(x)\|$

Exercice 12

Soit E un espace euclidien et soit p un projecteur de E.

Démontrer que les propositions suivantes sont équivalentes :

- (i) p est un projecteur orthogonal
- (ii) $\forall (x,y) \in E \times E, \langle p(x), y \rangle = \langle x, p(y) \rangle$
- (iii) $\forall x \in E, \|p(x)\| \leq \|x\|$

(indication: pour démontrer (iii) \Rightarrow (i), on pourra travailler par l'absurde)

Exercice 13

Soit E un espace euclidien de dimension $n \ge 2$, muni d'une base orthonormée $\mathscr{B} = (e_1, \dots, e_n)$.

On cherche à prouver qu'il existe $(y_1, \ldots, y_n) \in E^n$ tel que $\forall i \neq j, ||y_i|| = ||y_i - y_j|| = 1$.

On note I_n la matrice identité de taille n et J_n la matrice carrée de taille n dont tous les coefficients valent 1.

1. Soit $(y_1, ..., y_n) \in E^n$.

On pose $A = (a_{i,j})$ où $a_{i,j}$ est la $i^{\text{ème}}$ coordonnée de y_j dans \mathscr{B} .

- a) Exprimer ${}^{t}AA$ à l'aide du produit scalaire de E.
- b) En déduire que la famille (y_1, \ldots, y_n) vérifie la propriété voulue si et seulement si :

$$^tAA = \frac{1}{2} \left(I_n + J_n \right)$$

- **2.** On pose $M = \frac{1}{2}(I_n + J_n)$.
 - a) Montrer que les sous-espaces $\operatorname{Ker}\left(M-\frac{1}{2}\,I_n\right)$ et $\operatorname{Ker}\left(M-\frac{n+1}{2}\,I_n\right)$ sont supplémentaires orthogonaux.
 - b) En déduire l'existence d'une matrice orthogonale P telle que $M = {}^{t}PDP$, où :

$$D = \operatorname{Diag}\left(\frac{1}{2}, \dots, \frac{1}{2}, \frac{n+1}{2}\right)$$

c) Conclure.

Énoncés de concours

Exercice 14 (d'après E3A 2024 PSI)

- Soit n un entier naturel supérieur ou égal à 3.
- On identifie dans tout l'exercice $\mathcal{M}_{n,1}(\mathbb{R})$ et \mathbb{R}^n .
- Pour p et q deux entiers naturels non nuls et pour toute matrice A de $\mathcal{M}_{p,q}(\mathbb{R})$, on note A^{\top} la matrice de $\mathcal{M}_{q,p}(\mathbb{R})$, transposée de la matrice A.
- On rappelle que le produit scalaire canonique de deux vecteurs X_1 et X_2 de \mathbb{R}^n est : $\langle X_1 | X_2 \rangle = X_1^\top X_2$ et que $||X_1||^2 = X_1^\top X_1$.
- Soient $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ deux vecteurs linéairement indépendants de \mathbb{R}^n .

• On définit la matrice $M=(m_{ij})_{(i,j)\in \llbracket 1,n\rrbracket^2}$ de $\mathscr{M}_n(\mathbb{R})$ par :

$$\forall (i,j) \in [1,n]^2, \ m_{ij} = \delta_{ij} + \alpha x_i x_j + \beta y_i y_j$$

où α et β sont deux réels et δ_{ij} désigne le symbole de Kronecker :

$$\delta_{ij} = \begin{cases} 1 & si \ j = i \\ 0 & sinon \end{cases}$$

- Enfin, on note f l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique de \mathbb{R}^n est M.
- 1. Justifier que la matrice M est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.
- 2. On note $U_X = XX^{\top}$.
 - a) Justifier que $U_X \in \mathcal{M}_n(\mathbb{R})$ et écrire son terme général. Cette matrice est-elle diagonalisable?
 - b) Déterminer le rang de U_X puis une base de son image.
 - c) Prouver que Ker (U_X) et Im (U_X) sont deux sous-espaces vectoriels orthogonaux.
 - d) Prouver que $\operatorname{Ker}(U_X)$ et $\operatorname{Im}(U_X)$ sont deux sous-espaces vectoriels supplémentaires.
 - e) Déterminer un polynôme annulateur de degré 2 de la matrice U_X .
 - f) On note u_X l'endomorphisme de \mathbb{R}^n canoniquement associé à la matrice U_X . Déterminer la matrice de u_X dans une base adaptée à la décomposition de la question
- 3. Dans le cas particulier où $\alpha \neq 0$ et $\beta = 0$, déterminer les valeurs propres de la matrice M. En déduire une matrice diagonale semblable à la matrice M.
- 4. On revient au cas général et on se propose de déterminer les valeurs propres de la matrice $M = I_n + \alpha U_X + \beta U_Y$, quelles que soient les valeurs de α et de β .
 - a) On note F = Vect(X, Y) et f l'endomorphisme de \mathbb{R}^n canoniquement associé à la matrice M.
 - (i) Déterminer MX.
 - (ii) En déduire que F est stable par f.
 - b) Justifier que F^{\perp} est aussi stable par f et déterminer l'endomorphisme induit par f sur F^{\perp} .
 - $\boldsymbol{c}) \text{ On note } G = \begin{pmatrix} 1 + \alpha \|X\|^2 & \alpha \left\langle X \,|\, Y \right\rangle \\ \beta \left\langle X \,|\, Y \right\rangle & 1 + \beta \|Y\|^2 \end{pmatrix}.$
 - (i) Justifier que G est la matrice de l'endomorphisme induit sur F par f dans la base (X,Y).
 - (ii) Écrire la matrice de f dans une base adaptée à la décomposition $E = F \oplus F^{\perp}$.
 - (iii) Justifier, sans calculer ses valeurs propres, que G est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ et que ses valeurs propres sont réelles.
 - (iv) Déterminer les valeurs propres de G.
 - d) Déterminer les valeurs propres de la matrice M.

Exercice 15 (d'après E3A 2024 PC)

- Soit n un entier naturel non nul.
- On note $E = \mathbb{R}_{2n}[X]$ l'espace vectoriel des polynômes de degrés inférieurs ou égaux à 2n. Pour tout $k \in [0, 2n]$, on note $e_k = X^k$ et $\mathcal{B} = (e_0, \dots, e_{2n})$ la base canonique de E.
- Pour tout couple de polynômes (P,Q) de E^2 , on pose $\langle P | Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$ et on rappelle que l'on définit ainsi un produit scalaire sur E.
- Soit L l'application définie sur E par : $\forall P \in E, L(P) = \int_{-1}^{1} P(t) dt$.

- 1. Montrer que L est une forme linéaire sur E.
- 2. Déterminer $L(e_k)$ pour tout $k \in [0, 2n]$.
- 3. Déterminer la dimension de Ker(L).
- 4. Prouver qu'il existe une base \mathcal{U} , que l'on ne cherchera pas à expliciter, de Ker(L), dont le premier vecteur est e_1 .
- 5. Montrer:
 - a) Vect (e_0) et Ker(L) sont deux sous-espaces orthogonaux,
 - b) $E = \text{Vect}(e_0) \oplus \text{Ker}(L)$.
- 6. Soit λ un réel. On considère l'application T_{λ} définie sur E par :

$$\forall P \in E, T_{\lambda}(P) = P + \lambda L(P)X$$

- a) Vérifier que T_{λ} est un endomorphisme de E.
- **b)** Soit $P \in E$. Calculer $(L \circ T_{\lambda})(P)$.
- c) Déterminer la matrice de T_{λ} dans une base de E adaptée à la décomposition obtenue aux questions 4 et 5.
- d) Déterminer les valeurs propres de T_{λ} .
- e) L'endomorphisme T_{λ} est-il diagonalisable?
- f) Justifier que T_{λ} est un automorphisme de E.
- g) Pour tous réels α et β , préciser $T_{\alpha} \circ T_{\beta}$.
- h) Déterminer T_{λ}^{-1} .

Exercice 16 (d'après E3A 2024 PC)

- 1. Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels.
 - Soient P et Q deux éléments de E.
 - On note : $P = \sum_{k=0}^{p} a_k X^k$ et $Q = \sum_{k=0}^{q} b_k X^k$, où $a_p \neq 0$ et $b_q \neq 0$.

Prouver que la série $\sum_{n\geqslant 0} 2^{-n}P(n)$ Q(n) est absolument convergente.

- 2. On pose pour tout $(P,Q) \in E^2$: $\langle P | Q \rangle = \sum_{n=0}^{+\infty} 2^{-n} P(n) Q(n)$.
 - a) Montrer : $\langle S | S \rangle = 0 \Leftrightarrow S$ est le polynôme nul.
 - b) Démontrer alors que l'on définit ainsi un produit scalaire sur E.

3. Quelques calculs de sommes

- a) Rappeler l'ensemble de définition de la fonction $f: t \mapsto \sum_{n=0}^{+\infty} t^n$ et sa somme.
- **b)** Justifier que la série $\sum_{n\geqslant 0} e^{-nx}$ converge pour $x\in \mathbb{R}_+^*$.
- c) Exprimer $g: x \mapsto \sum_{n=0}^{+\infty} e^{-nx}$ à l'aide de la fonction f et en déduire que g est de classe \mathscr{C}^{∞} sur \mathbb{R}_+^* .
- d) Soit x > 0.

Exprimer à l'aide des fonctions usuelles, g(x), g'(x) et g''(x).

e) Soit α un entier naturel, on pose $S_{\alpha} = \sum_{n=0}^{+\infty} n^{\alpha} 2^{-n}$.

Calculer S_0, S_1 et S_2 .

On pourra utiliser les questions précédentes avec une valeur de x bien choisie. On admettra que $S_3=26$ et $S_4=150$.

4. On cherche à calculer la distance du vecteur X^2 au sous-espace vectoriel $\mathbb{R}_1[X]$ dans E muni du produit scalaire défini dans la question 2.

- a) Déterminer les réels a et b tels que $X^2 aX b$ soit orthogonal à 1 et à X.
- **b**) Prouver que l'ensemble $\left\{\sum_{n=0}^{+\infty} 2^{-n} \left(n^2 c \, n d\right)^2 \mid (c, d) \in \mathbb{R}^2\right\}$ possède un minimum.
- c) En déduire la distance recherchée.

Exercice 17 (d'après E3A 2023 PC)

- Soit n un entier supérieur ou égal à 2 .
- On désigne par E un espace vectoriel euclidien de dimension n.
- Le produit scalaire de deux vecteurs x et y de E est noté $\langle x | y \rangle$ et ||x|| représente la norme du vecteur x. Pour tout vecteur u non nul de E, on note φ_u l'application de E dans lui-même définie par :

$$\forall x \in E, \varphi_u(x) = 2 \frac{\langle x \mid u \rangle}{\langle u \mid u \rangle} \cdot u - x$$

1. Étude de l'application φ_u

- a) Montrer que φ_u est un endomorphisme de E.
- b) En calculant $\varphi_u \circ \varphi_u$, montrer que φ_u est un automorphisme de E et déterminer φ_u^{-1} .
- c) Soit x appartenant à E, calculer $\langle \varphi_u(x) | \varphi_u(x) \rangle$.
- d) En déduire que φ_u conserve le produit scalaire, c'est-à-dire :

$$\forall (x,y) \in E^2, \langle \varphi_u(x) | \varphi_u(y) \rangle = \langle x | y \rangle$$

e) On note D_u la droite vectorielle de base u et $H_u = D_u^{\perp}$.

Déterminer l'image de D_u par φ_u .

En déduire sans calcul que H_u est stable par φ_u .

Reconnaître alors la nature géométrique de l'endomorphisme φ_u et en donner les éléments caractéristiques.

2. Étude d'un exemple dans le cas n=3

Soit H le sous-espace vectoriel de \mathbb{R}^3 muni de sa structure euclidienne canonique et constitué des

vecteurs
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 tels que $x + y + z = 0$.

- a) Donner la dimension et une base orthonormale de H^{\perp} .
- b) Écrire la matrice dans la base canonique de \mathbb{R}^3 de la projection orthogonale sur H^{\perp} puis celle de la projection orthogonale sur H.
- c) Soit v un vecteur unitaire de H^{\perp} . Écrire la matrice de φ_v dans la base canonique de \mathbb{R}^3 .

3. Étude d'une réciproque

Soit ψ un endomorphisme de E tel qu'il existe une droite vectorielle Δ de E vérifiant : $\forall x \in \Delta, \psi(x) = x$ et $\forall x \in \Delta^{\perp}, \psi(x) = -x$.

- a) Montrer que $\psi \circ \psi = \mathrm{id}_E$ et que ψ conserve le produit scalaire.
- b) Montrer qu'il existe au moins un vecteur u de E tel que $\psi = \varphi_u$.

Exercice 18 (d'après E3A 2020 PC)

Dans cet exercice, E désigne l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré inférieur ou égal à 2 et à coefficients réels et $\mathscr{B} = (1, X, X^2)$ sa base canonique.

Pour tout couple (P,Q) d'éléments de E, on pose :

$$\langle P, Q \rangle = P(1)Q(1) + P'(1)Q'(1) + P''(1)Q''(1).$$

- 1. Vérifier que l'on définit ainsi un produit scalaire sur E.
- 2. Déterminer une base orthonormale de E pour ce produit scalaire.
- 3. Déterminer la distance du polynôme $U = X^2 4$ à $\mathbb{R}_1[X]$.
- 4. Soit H l'ensemble des polynômes P de E tels que P(1)=0.
 - a) Vérifier que H est un sous-espace vectoriel de E. Quelle est sa dimension?
 - b) Soit φ la projection orthogonale sur H. Déterminer la matrice de φ dans la base \mathscr{B} .

Exercice 19 (d'après E3A 2021 PC)

- Soient $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$.
- On note $(P_0(X) = 1, P_1(X) = X, \dots, P_n(X) = X^n)$ la base canonique de E. Soit $(a_j)_{j \in [0,n]}$ une famille de réels distincts deux à deux.
- Pour tout couple (P,Q) d'éléments de E, on pose : $\langle P | Q \rangle = \sum_{j=0}^{n} P(a_j) Q(a_j)$.
- 1. Vérifier que l'on définit ainsi un produit scalaire sur E.
- 2. Soit P un polynôme de E, calculer $\langle P | P_0 \rangle$.
- 3. Pour tout $j \in [0, n]$, on considère le polynôme :

$$L_{j}(X) = \prod_{\substack{k=0\\k \neq j}}^{n} \frac{X - a_{k}}{a_{j} - a_{k}}$$

- a) Démontrer que, pour tout couple $(i,j) \in [0,n]^2, L_j(a_i) = \begin{cases} 1 \text{ si } i=j \\ 0 \text{ sinon} \end{cases}$.
- **b**) Prouver que la famille $\mathscr{B} = (L_j)_{j \in \llbracket 0, n \rrbracket}$ est une famille orthogonale pour le produit scalaire $\langle \cdot \, | \, \cdot \rangle$.
- c) En déduire que \mathcal{B} est une base de E et qu'elle est orthonormale.
- d) Déterminer les composantes d'un polynôme P de E dans la base \mathscr{B} .
- e) Déterminer $\sum_{j=0}^{n} L_j$.
- 4. Soit H l'ensemble des polynômes P de E tels que $\sum_{j=0}^{n} P(a_j) = 0$.
 - a) Montrer que H est un sous-espace vectoriel de E.
 - b) Déterminer H^{\perp} et en déduire la dimension de H.
- 5. Soit Q un polynôme de E.
 - a) Déterminer le projeté orthogonal de Q sur H^{\perp} .
 - b) Déterminer la distance de Q au sous-espace vectoriel H.

Exercice 20 (d'après E3A 2020 MP)

Pour tout entier naturel n supérieur ou égal à 2, on note $E = \mathbb{R}_n[X]$ et on pose, pour tout couple $(P,Q) \in E^2$:

$$\langle P, Q \rangle = \int_0^1 P(t)Q(t) dt$$

- 1. Démontrer que l'on définit ainsi sur E un produit scalaire. Dans la suite de cet exercice, E est l'espace euclidien $\mathbb{R}_n[X]$ muni de ce produit scalaire.
- 2. Soit F un sous-espace vectoriel de E de dimension p. Donner sans démonstration la dimension de F^{\perp} .
- 3. On prend dans cette question n = 2Déterminer une base du sous-espace $(\mathbb{R}_1[X])^{\perp}$.
- 4. On revient au cas général : $n \ge 2$ et soit $L \in (\mathbb{R}_{n-1}[X])^{\perp}$ non nul.
 - a) Déterminer le degré de L.
 - b) On pose, lorsque cela est possible, pour x réel : $\varphi(x) = \int_0^1 L(t)t^x dt$.
 - (i) Montrer que φ est une fonction rationnelle.
 - (ii) Déterminer les zéros et les pôles de φ . Donner pour chacun l'ordre de multiplicité. On pourra examiner les degrés du dénominateur et du numérateur de la fonction rationnelle φ .
 - (iii) En déduire une expression de φ , à une constante multiplicative près, faisant apparaître le numérateur et le dénominateur sous forme factorisée.
 - c) En utilisant une décomposition en éléments simples de la fonction rationnelle φ , donner une base de $(\mathbb{R}_{n-1}[X])^{\perp}$.

Exercice 21 (d'après E3A 2020 PSI)

Soient E un plan vectoriel, $\mathscr{B}=(\vec{i},\vec{j})$ une base de E et $\theta\in]0,\pi[$ fixé.

On considère l'endomorphisme f de E représenté par sa matrice C dans la base \mathscr{B} : $C = \begin{pmatrix} 0 & -1 \\ 1 & 2\cos(\theta) \end{pmatrix}$.

On définit alors sur E une forme bilinéaire symétrique Φ par les relations :

$$\Phi(\vec{i}, \vec{j}) = \Phi(\vec{j}, \vec{i}) = \cos(\theta) \text{ et } \Phi(\vec{i}, \vec{i}) = \Phi(\vec{j}, \vec{j}) = 1.$$

On rappelle qu'une forme bilinéaire sur E est une application de E^2 dans \mathbb{R} , linéaire par rapport à chacune des variables.

- 1. Soient $X = x_1 \vec{i} + x_2 \vec{j}$ et $Y = y_1 \vec{i} + y_2 \vec{j}$ deux vecteurs de E. Exprimer $\Phi(X,Y)$ en fonction des réels x_1, x_2, y_1, y_2 et θ .
- 2. Montrer que Φ est un produit scalaire sur E.
- 3. Prouver que f est une isométrie pour le produit scalaire Φ .
- 4. Déterminer un vecteur $\vec{k} \in E$ tel que (\vec{i}, \vec{k}) soit une base orthonormée pour Φ et que $\Phi(\vec{j}, \vec{k}) > 0$.
- 5. Expliciter la matrice de f dans la base (\vec{i}, \vec{k}) . Préciser la nature de f.
- **6.** Soit $m \in \mathbb{N}^*$. Pour quelles valeurs de $\theta \in]0, \pi[$ a-t-on $f^m = \mathrm{id}_E ?$

Exercice 22

Étudier le domaine de convergence des séries entières suivantes.

1)
$$\sum z^n$$
 2) $\sum n z^n$ 3) $\sum 2^n z^n$ 4) $\sum \frac{z^n}{3^n}$ 5) $\sum \frac{z^n}{n}$

6)
$$\sum \frac{z^n}{\ln(n)}$$
 7) $\sum \frac{z^n}{n^n}$ 8) $\sum (\ln(n)) z^n$ 9) $\sum n! z^n$ 10) $\sum (\sin(n)) z^n$

Exercice 23

1. Déterminer le rayon de convergence et la somme de la série $\sum \frac{n^3}{n!} z^n$

2. Déterminer, grâce à la formule de Stirling, le rayon de convergence de la série $\sum \frac{n^n}{n!} z^n$.

Exercice 24

Pour chacune des séries entières de la variable réelle suivante, déterminer le rayon de convergence et calculer la somme de la série entière sur l'intervalle ouvert de convergence :

1.
$$\sum_{n\geqslant 1} \frac{3^n x^{2n}}{n}$$
.

2.
$$\sum a_n \ x^n \text{ avec} : \forall n \in \mathbb{N}, \begin{cases} a_{2n} = 4^n \\ a_{2n+1} = 5^{n+1} \end{cases}$$

Exercice 25

- 1. Déterminer un exemple où la série $\sum (a_n + b_n) z^n$ a un rayon de convergence strictement plus grand que $\min(R_a, R_b)$.
- 2. Déterminer les rayons de convergence des séries $f: z \mapsto 1-z, g: z \mapsto \sum_{n=0}^{+\infty} z^n$, et $f \times g$.
- 3. Montrer que $\sum (n+1) z^n$ est un produit de séries entières de rayon de convergence égal à 1 et que son rayon de convergence est égal à 1.
- 4. Déterminer le rayon de convergence et la somme de la série $\sum H_n x^n$ où : $\forall n \in \mathbb{N}^*, H_n = \sum_{k=1}^n \frac{1}{k}$.

Exercice 26

Soit la suite (a_n) définie par $a_0 = -4$, $a_1 = 2$, $a_2 = 4$ et $a_{n+3} = a_{n+2} + a_{n+1} - a_n$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que $\forall n \in \mathbb{N}, |a_n| \leq 2^{n+2}$.
- 2. Montrer que le rayon de convergence R de la série entière $\sum a_n x^n$ est non nul.
- 3. On pose $\rho = \min\{1, R\}$ et, lorsque c'est possible, $S(x) = \sum_{n=0}^{+\infty} a_n x^n$.
 - a) Montrer que pour tout $x \in]-\rho, \rho[, S(x) = \frac{-4 + 6x + 6x^2}{(x+1)(x-1)^2}.$
 - **b)** Montrer qu'il existe $(a, b, c) \in \mathbb{R}^3$ tels que $\frac{-4 + 6x + 6x^2}{(x+1)(x-1)^2} = \frac{a}{x+1} + \frac{b}{(x-1)^2} + \frac{c}{x-1}$.
- 4. Calculer a_n en fonction de n.

Exercice 27

Soit X un ensemble fini. On dit que $f: X \to X$ est une involution de X si $f \circ f = \mathrm{id}$.

On note pour $n \in \mathbb{N}$, I_n le nombre d'involutions de]1, n[et l'on convient que $I_0 = 1$.

Soit
$$S: z \mapsto \sum_{n=0}^{+\infty} \frac{I_n}{n!} z^n$$
.

- 1. Calculer I_1 , I_2 , I_3 .
- 2. Montrer que $\forall n \in \mathbb{N}, \ I_{n+2} = I_{n+1} + (n+1) I_n$.
- 3. Montrer que S a un rayon de convergence R > 0.
- 4. Soit $x \in]-R, R[$.

Calculer (1+x) S(x) et en déduire une expression simple de S(x).

En déduire une expression de I_n .

Exercice 28

Soit (a_n) la suite définie par $a_0 = a_1 = 1$ et pour tout $n \in \mathbb{N}$: $a_{n+2} = a_{n+1} + \frac{a_n}{n+2}$.

- 1. Démontrer que la série $\sum (a_{n+2} a_{n+1})$ est divergente. En déduire que $\lim_{n \to +\infty} a_n = +\infty$.
- 2. Déterminer le rayon de convergence de la série entière $\sum a_n x^n$.
- 3. On note $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n \text{ sur }]-1,1[.$
 - a) Vérifier que f est solution sur]-1,1[de l'équation différentielle (x-1)y'+(x+1)y=0.
 - b) En déduire une expression simplifiée de f.
- 4. En déduire que pour tout $n \in \mathbb{N}$, $a_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$ (n-k+1) puis en déduire un équivalent de a_n .

Exercice 29

On note, pour $n \in \mathbb{N}$, $a_n = \text{Card}\{(p,q) \in \mathbb{N}^2 \mid p+2q=n\}$ qui représente, par exemple, le nombre de façons de payer n euros (quand $n \neq 0$) avec des pièces de 1 et 2.

- 1. Calculer a_0, a_1, a_2 et a_3 .
- 2. Justifier que la fonction $f: x \mapsto \frac{1}{(1-x)(1-x^2)}$ est développable en série entière au voisinage de 0 et déterminer son développement en série entière.
- 3. En déduire deux expressions de a_n en fonction de n.

Exercice 30

- 1. Pour tout $n \in \mathbb{N}^*$, on note a_n le nombre de parenthésage possibles d'un produit de n éléments de $\mathscr{M}_p(\mathbb{R})$. Par convention, on note : $a_1 = 1$. Par ailleurs :
 - $\times a_2 = 1,$
 - $a_3 = 2,$
 - $\times a_4 = 5.$

Montrer que, pour tout $n \in [2, +\infty]$, $a_n = \sum_{k=1}^{n-1} a_k a_{n-k}$.

- 2. On étudie maintenant la série entière $\sum a_n x^n$.
 - Supposons que le rayon de convergence R de cette série est strictement positif.

On note f la somme de cette série.

- Démontrer : $\forall x \in]-R, R[, (f(x))^2 f(x) + x = 0.$
- 3. On ne suppose plus R > 0. Calculer R et la somme f de la série entière $\sum a_n x^n$.
- **4.** En déduire, pour tout $n \in \mathbb{N}^*$, la valeur de a_n .

Exercice 31

Soit (u_n) une suite telle que, pour tout $n \ge 3$, $u_n = 6u_{n-1} - 11u_{n-2} + 6u_{n-3}$.

- 1. Montrer qu'il existe $c \ge 0$ tel que, pour tout $n \in \mathbb{N}$, $|u_n| \le c 8^n$.
- 2. Trouver le rayon de convergence de $\sum u_n x^n$.
- 3. Déterminer la somme de cette série entière.

Exercice 32

Solutions développables en séries entières des équations différentielles suivantes?

a)
$$(x^2 - x)y'' + (x + 1)y' - y = 0$$
 b) $(x^2 + 1)y'' + 4xy' + 2y = 0$ c) $4xy'' - 2y' + 9x^2y = 0$

Exercice 33

1. Montrer que la série $\sum \frac{(2n)!}{(n!)^2 2^{4n} (2n+1)}$ converge.

On se propose de calculer la somme de cette série.

- 2. Donner le développement en série entière en 0 de $t \mapsto \frac{1}{\sqrt{1-t}}$ en précisant le rayon de convergence. Remarque : dans l'expression du développement, on utilisera la notation factorielle.
- 3. En déduire le développement en série entière en 0 de $x \mapsto \arcsin(x)$ ainsi que son rayon de convergence.
- 4. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{(2n)!}{(n!)^2 2^{4n} (2n+1)}.$

Exercice 34

1. Expliciter les développements en série entière des fonctions

$$x \mapsto \frac{1}{\sqrt{1-x}}$$
 et $x \mapsto \frac{1}{(1-x)^{3/2}}$

2. À l'aide d'un produit de Cauchy, démontrer :

$$\sum_{k=0}^{n} \frac{1}{4^k} \binom{2k}{k} = \frac{2n+1}{4^n} \binom{2n}{n}$$

Exercice 35

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et $\forall n\in\mathbb{N}, u_{n+1}=\sum_{k=0}^n \binom{n}{k} u_k u_{n-k}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 4^{n+1}n!$.
- 2. a) Montrer que la somme f de la série entière $\sum \frac{u_n}{n!} x^n$ est solution de l'équation différentielle $y' = y^2$ sur un intervalle à préciser.
 - b) En déduire une expression simplifiée de f, sur un intervalle où f ne s'annule pas.
- 3. Expliciter, pour tout $n \in \mathbb{N}$, le terme général u_n en fonction de n.

Exercice 36

Soit l'équation différentielle : x(x-1)y'' + 3xy' + y = 0.

1. Trouver les solutions de cette équation différentielle développables en série entière sur un intervalle]-r,r[de \mathbb{R} , avec r>0.

Déterminer la somme des séries entières obtenues.

2. Est-ce que toutes les solutions de x(x-1) y'' + 3 x y' + y = 0 sur]0,1[sont les restrictions d'une fonction développable en série entière sur]-1,1[?]

Exercice 37

Soient (u_n) et (v_n) les suites définies par $u_0 = v_0 = 1$ et :

$$\begin{cases} \forall n \in \mathbb{N}, \ u_{n+1} = u_n - v_n \\ \forall n \in \mathbb{N}, \ v_{n+1} = u_n - 2v_n \end{cases}$$

Déterminer le rayon de convergence des séries entières $\sum u_n x^n$ et $\sum v_n x^n$ et calculer leurs sommes.

Exercice 38

Pour
$$n \ge 0$$
, on pose : $a_n = \int_0^{\pi/2} (\cos t)^n \sin(nt) dt$.

- 1. Calculer a_0 , a_1 et a_2 .
- 2. Pour $x \in]-1,1[$, calculer $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.
- 3. Déterminer le rayon de convergence de f(x).
- 4. Valeur de a_n ?

Exercice 39

Dans la suite, on note:

- \times f la somme de la série entière $\sum_{n\geq 1} (\ln(n)) x^n$ et R_f son rayon.
- $\times~g$ la somme de la série entière $\sum\limits_{n>2}~\ln\left(1-\frac{1}{n}\right)~x^n$ et R_g son rayon.
- 1. Déterminer les rayons de convergence R_f et R_q .
- 2. Montrer que g est définie et continue sur [-1, 1].
- 3. Trouver une relation entre (1-x)f(x) et g(x).
- 4. Montrer que f est continue sur [-1,1[et trouver des équivalents de f et g en 1.

Exercice 40
Soit la suite
$$(a_n)$$
 définie par :
$$\begin{cases} a_0 = -4, \\ a_1 = 2, \\ a_2 = 4, \\ \forall n \in \mathbb{N}, \ a_{n+3} = a_{n+2} + a_{n+1} - a_n \end{cases}$$

- 1. Montrer: $\forall n \in \mathbb{N}, |a_n| \leq 2^{n+2}$.
- 2. Montrer que le rayon de convergence R de la série entière $\sum a_n x^n$ est non nul.
- 3. On pose $\rho = \min\{1, R\}$ et, lorsque c'est possible, $S(x) = \sum_{n=0}^{+\infty} a_n x^n$.
 - a) Montrer: $\forall x \in]-\rho, \rho[, S(x) = \frac{-4 + 6x + 6x^2}{(x+1)(x-1)^2}$

- **b)** Montrer qu'il existe $(a, b, c) \in \mathbb{R}^3$ tel que $\frac{-4 + 6x + 6x^2}{(x+1)(x-1)^2} = \frac{a}{x+1} + \frac{b}{(x-1)^2} + \frac{c}{x-1}$.
- 4. Calculer a_n en fonction de n.

Exercice 41 (d'après E3A 2017 - PC-2)

On s'intéresse dans cette partie à l'équation différentielle :

$$xy'' + y' - (x+1)y = 1$$

- 1. On suppose qu'il existe une solution θ développable en série entière de cette équation différentielle. On note alors $\theta(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour tout $x \in]-r,r[$ où r>0 est le rayon de convergence et $(a_n)_{n\in\mathbb{N}}$ une suite réelle.
 - a) Déterminer alors une relation entre a_1 et a_0 , ainsi qu'une relation entre a_{n+2}, a_{n+1} et a_n pour tout $n \in \mathbb{N}$.
 - **b)** Pour une telle suite $(a_n)_{n\in\mathbb{N}}$, montrer qu'il existe K>0 telle que :

$$\forall n \in \mathbb{N}, |a_n| \leqslant \frac{K}{n!}$$

En déduire qu'une telle solution θ existe et que de plus $r=+\infty$.

2. On souhaite résoudre ici cette équation différentielle sur l'intervalle $I=\mathbb{R}_+^*$ et l'on note :

$$S = \left\{ y \in \mathcal{C}^2(I, \mathbb{R}) \mid \forall x > 0, \ xy''(x) + y'(x) - (x+1)y(x) = 1 \right\}$$

a) Pour tout $y \in \mathcal{C}^2(I, \mathbb{R})$, on pose $z(x) = e^{-x}y(x)$ pour tout x > 0. Montrer que $y \in S$ si et seulement si z vérifie :

$$\forall x > 0, \ xz''(x) + (2x+1)z'(x) = e^{-x}$$
 (*)

b) Déterminer les fonctions $Z \in \mathcal{C}^1(I, \mathbb{R})$ telles que :

$$\forall x > 0, \ xZ'(x) + (2x+1)Z(x) = 0$$

c) Déterminer les $Z \in \mathcal{C}^1(I,\mathbb{R})$ telles que :

$$\forall x > 0, \ xZ'(x) + (2x+1)Z(x) = e^{-x}$$

- d) En déduire l'expression des fonctions $z \in \mathcal{C}^2(I, \mathbb{R})$ vérifiant (\star) de 2.a), en utilisant la fonction R définie pour x > 0 par $R(x) = \int_x^{+\infty} \frac{\mathrm{e}^{-t}}{t} dt$. (on utilisera R(x) et R(2x))
- e) Donner alors l'expression de la solution générale $y \in S$.
- 3. a) Sachant que $R(x) = -\ln(x) + \gamma + o(1)$ quand $x \to 0$ avec x > 0, déterminer les solutions $y \in S$ ayant une limite finie en 0.

Exprimer alors ces solutions en utilisant la fonction S de la partie I et reliée à R par :

$$S(x) = R(x) + \ln(x) + \gamma \text{ pour } x > 0$$

(vu en I.3.c)).

b) Sachant que S est développable en série entière sur \mathbb{R} , donner l'expression des solutions f de la question $\mathbf{1}$.: on exprimera f(x) en fonction de S(x) et S(2x) pour tout $x \in \mathbb{R}$. Comment pourrait-on obtenir une expression des suites $(a_n)_{n \in \mathbb{N}}$ de $\mathbf{1}$.?

Exercice 42 (d'après E3A 2022 - PSI)

1. Question de cours

Soit f une fonction continue sur \mathbb{R} , à valeurs réelles et T-périodique.

Montrer:
$$\forall x \in \mathbb{R}, \int_{x}^{x+T} f(u) \ du = \int_{0}^{T} f(u) \ du.$$

* * * * *

On se propose de déterminer des fonctions y de classe \mathscr{C}^2 sur \mathbb{R} et vérifiant, pour tout réel x, la relation :

$$xy''(x) + y'(x) - 4xy(x) = 0 (**)$$

- 2. On suppose qu'il existe une fonction g, développable en série entière, de rayon de convergence non nul, vérifiant (**), sous la forme $g: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ et telle que : $g(0) = a_0 = 1$.
 - a) Prouver que $a_1 = 0$ et déterminer pour tout $n \ge 1$ une relation entre a_{n-1} et a_{n+1} .
 - b) Déterminer alors a_n pour tout entier naturel n.
 - c) Déterminer l'ensemble de définition de la fonction g ainsi obtenue.