Colles

semaine 23:18 mars - 23 mars

Questions de cours

Exercice 1

Notons $E = \mathbb{R}^3$.

On note f l'endomorphisme de E dont la matrice dans la base canonique de E est (étudier l'un des cas) :

$$A_2 = \frac{1}{9} \begin{pmatrix} -7 & 4 & 4 \\ 4 & 8 & -1 \\ -4 & 1 & -8 \end{pmatrix}, \text{ puis } A_3 = \frac{1}{3} \begin{pmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ -1 & -2 & 2 \end{pmatrix} \text{ et enfin } A_4 = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 \end{pmatrix}.$$

Démontrer que f est une rotation et en déterminer les caractéristiques (angle et axe).

Exercice 2

Borne supérieure d'une partie de la forme kA et norme sur $\mathcal{B}(I,K)$.

Exercice 3

Caractérisation du caractère défini / défini-positif des endomorphismes auto-adjoints. Énoncé et démonstration.

Exercices

Exercice 4

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

On note $\|\cdot\|$ la norme euclidienne sur E et $n = \dim(E)$.

- 1. Soit u un endomorphisme de E, tel que : $\forall x \in E$, ||u(x)|| = ||x||.
 - a) Démontrer: $\forall (x,y) \in E^2, \langle u(x), u(y) \rangle = \langle x, y \rangle.$
 - b) Démontrer que u est bijectif.
- 2. Démontrer que l'ensemble O(E) des isométries vectorielles de E, muni de la loi \circ , est un groupe.
- 3. Soit $u \in \mathcal{L}(E)$. Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base orthonormée de E. Prouver que : $u \in O(E) \Leftrightarrow (u(e_1), u(e_2), \dots, u(e_n))$ est une base orthonormée de E.

Exercice 5

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

Soit u un endomorphisme de E.

- 1. Montrer que u est une isométrie de E si et seulement si $\forall (x,y) \in E^2, \langle u(x),y \rangle = \langle x,u^{-1}(y) \rangle$.
- 2. Montrer que deux des propriétés suivantes entraînent la troisième :
 - (i) u est une isométrie (ii) $u^2 = -id$ (iii) $\forall (x,y) \in E \times E, \langle u(x), y \rangle = -\langle x, u(y) \rangle$

Exercice 6

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

Soit $f \in O(E)$ et soit V un sous-espace vectoriel de E.

On suppose que s est une isométrie vectorielle et une symétrie.

Montrer que s est une symétrie orthogonale.

Exercice 7

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

Soient f et g deux endomorphismes de E tels que : $\forall x \in E, ||f(x)|| = ||g(x)||$.

- 1. Montrer: Ker(f) = Ker(g).
- 2. Montrer: $\forall (x,y) \in E \times E, \langle f(x), f(y) \rangle = \langle g(x), g(y) \rangle.$
- 3. En déduire l'existence d'une isométrie $\varphi \in \mathcal{O}(E)$ tel que : $g = \varphi \circ f$.

Exercice 8

Soit E un espace euclidien de dimension finie $n \in \mathbb{N}^*$.

On note $\langle \cdot, \cdot \rangle$ le produit scalaire et $\| \cdot \|$ la norme associée.

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormale de E.

Soit f un endomorphisme de E qui vérifie la propriété suivante :

$$\forall (x,y) \in E, \langle x,y \rangle = 0 \implies \langle f(x), f(y) \rangle = 0$$

- 1. Que dire de la famille $(f(e_1), \ldots, f(e_n))$?
- 2. a) Soit $(i,j) \in [1,n]^2$. En calculant le produit scalaire $\langle f(e_i) + f(e_j), f(e_i) f(e_j) \rangle$ de deux façons, montrer qu'il existe $\alpha \ge 0$ tel que $\forall i \in [1,n], ||f(e_i)|| = \alpha$.
 - **b)** Pour tout $x \in E$, déterminer alors ||f(x)||.
- 3. Montrer qu'il existe une isométrie $g \in O(E)$ telle que $f = \alpha \cdot g$.

Exercice 9

Soit
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
.

- 1. Montrer que A est diagonalisable de 4 façons différentes : sans calcul avec ses éléments propres avec le théorème du rang en calculant A^2 .
- 2. On suppose que A est la matrice d'un endomorphisme u dans une base orthonormale d'un espace euclidien E.
 - a) Que dire de u?
 - b) Donner une base orthonormale de E dans laquelle la matrice de u est diagonale.

Exercice 10

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace vectoriel euclidien.

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormée de E et soit $(f, g) \in \mathscr{L}(E) \times \mathscr{L}(E)$.

- 1. a) Pour tout $x \in E$, rappeler l'expression de x dans la base \mathscr{B} .
 - b) Déterminer $\operatorname{tr}(f)$ en fonction des e_i et des $f(e_i)$.
- 2. On suppose f et g sont des endomorphismes auto-adjoints positifs.

Montrer que $\operatorname{tr}(f \circ g) \geqslant 0$.

Exercice 11

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

On suppose que E est de dimension $n \ge 1$.

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormée de E.

Soit p un projecteur de E de rang égal à 1.

On note $A = \operatorname{Mat}_{\mathscr{B}}(p)$, et p^* l'endomorphisme dont la matrice dans la base \mathscr{B} est tA .

- 1. Montrer que p est un projecteur orthogonal si et seulement s'il est auto-adjoint.
- **2.** Démontrer : $\sum_{k=1}^{n} \| p(e_k) \|^2 = \text{tr} (p^* \circ p).$
- 3. a) Montrer que $\forall (x,y) \in E^2, \langle p(x), y \rangle = \langle x, p^*(y) \rangle$.
 - **b)** Montrer que Ker $(p^* \circ p) = \text{Ker}(p)$.
 - c) On suppose : $\sum_{k=1}^{n} ||p(e_k)||^2 = 1$. Montrer que p est un projecteur orthogonal.

Exercice 12

1. On note $\mathscr{S}_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques réelles de taille n dont les valeurs propres sont strictement positives.

Montrer que pour $M \in \mathscr{S}_n(\mathbb{R})$, on a $M \in \mathscr{S}_n^{++}(\mathbb{R}) \iff \forall X \in \mathscr{M}_{n,1}(\mathbb{R}), X \neq 0$, on a ${}^tXSX > 0$.

2. Soient $S \in \mathscr{S}_n(\mathbb{R})$ et $A \in \mathscr{M}_n(\mathbb{R})$. On pose B = SAS.

Montrer que $B \in \mathscr{S}_n^{++}(\mathbb{R})$ si et seulement si S est inversible et $A \in \mathscr{S}_n^{++}(\mathbb{R})$.

Exercice 13

On note $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$.

Soit $A \in \mathscr{M}_n(\mathbb{R})$.

- 1) Montrer que toute matrice de $\mathcal{M}_n(\mathbb{R})$ se décompose de manière unique comme somme d'une matrice symétrique et d'une matrice antisymétrique.
- 2) Montrer que : $A \in \mathcal{A}_n(\mathbb{R}) \iff \forall P \in \mathcal{O}_n(\mathbb{R}), P^{-1}AP$ est de diagonale nulle.

Exercice 14

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

On note $\mathscr{S}(E)$ l'espace des endomorphismes auto-adjoints de E et $\mathscr{S}^+(E)$ celui des endomorphismes auto-adjoints de valeurs propres positives.

- 1. Déterminer un endomorphisme auto-adjoint de \mathbb{R}^3 laissant invariant le plan $x_1 + x_2 = 0$.
- 2. Soit $f \in \mathcal{S}(E)$.

Montrer que Im(f) et Ker(f) sont supplémentaires orthogonaux dans E.

3. Soit $f \in \mathcal{S}(E)$.

Montrer: $f \in \mathcal{S}^+(E) \Leftrightarrow \operatorname{Sp}(f) \subset \mathbb{R}_+$.

4. Soit $(f, q) \in (\mathscr{S}^+(E))^2$.

Montrer: $Ker(f+g) = Ker(f) \cap Ker(g)$ et Im(f+g) = Im(f) + Im(g).

Exercice 15

On note $\mathscr{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques S de $\mathscr{M}_n(\mathbb{R})$ telles que :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), {}^t X S X \geqslant 0$$

1. Soit $S \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique.

Montrer: $S \in \mathscr{S}_n^+(\mathbb{R}) \Leftrightarrow \operatorname{Sp}(S) \subset \mathbb{R}_+$.

2. Soit f un endomorphisme auto-adjoint d'un espace euclidien E.

On suppose : Sp $f \subset \mathbb{R}_+$.

Montrer que le noyau de f est l'ensemble des vecteurs qui sont orthogonaux à leur image par f.

- 3. Soient $S \in \mathscr{S}_n^+(\mathbb{R})$ et $A \in \mathscr{M}_n(\mathbb{R})$ quelconques.
 - a) Montrer que ${}^{t}ASA = 0$ si et seulement si SA = 0.
 - b) Montrer que l'ensemble $\{A \in \mathcal{M}_n(\mathbb{R}), {}^t\!ASA = 0\}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et déterminer sa dimension en fonction du rang de S.

Exercice 16

On note $\mathscr{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques S de $\mathscr{M}_n(\mathbb{R})$ telles que :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ ^t XMX \geqslant 0$$

1. Soit $M \in \mathscr{M}_n(\mathbb{R})$ une matrice symétrique.

Montrer que $M \in \mathscr{S}_n^+(\mathbb{R})$ si, et seulement si, toutes ses valeurs propres sont positives.

Soit $M \in \mathscr{S}_n^+(\mathbb{R})$ et $\{\mu_1, \dots, \mu_p\}$ ses valeurs propres deux à deux distinctes.

- 2. Montrer qu'il existe un polynôme $P \in \mathbb{R}[X]$ de degré $\leqslant p-1$ tel que $P(\mu_i) = \sqrt{\mu_i}$ tout $1 \leqslant i \leqslant p$.
- 3. Montrer que $P(M) \in \mathscr{S}_n^+(\mathbb{R})$ et $P(M)^2 = M$.

Exercice 17

Soit E un espace euclidien. On dit qu'un endomorphisme $f \in \mathcal{L}(E)$ est une contraction lorsque :

$$\forall x \in E, \|f(x)\| \leqslant \|x\|$$

1. Soit f un endomorphisme auto-adjoint. Montrer :

$$f$$
 est une contraction \Leftrightarrow Sp $(f) \subset [-1,1]$

2. Montrer que si f est un endomorphisme auto-adjoint alors, pour tout polynôme $P \in \mathbb{R}[X]$ et tout $x \in E$, on a :

$$\|P(f)(x)\| \le \|x\| \times \left(\sup_{a \in \operatorname{Sp}(f)} |P(a)|\right)$$

Exercice 18 (d'après E3A 2020 MP)

1. On considère le trinôme du second degré à coefficients complexes $aX^2 + bX + c$ dont on note s_1 et s_2 les racines.

Donner, sans démonstration, les expressions de $\sigma_1 = s_1 + s_2$ et de $\sigma_2 = s_1 s_2$ à l'aide des coefficients a, b et c.

2. Soient a et b deux réels et $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par $u_0\in\mathbb{R},\ u_1\in\mathbb{R}$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+2} = a u_{n+1} + b u_n$$

On note r_1 et r_2 les racines dans \mathbb{C} de l'équation caractéristique associée à cette suite.

Soit $n \in \mathbb{N}$. Exprimer u_n en fonction de r_1 , r_2 et n.

On sera amené à distinguer trois cas et il n'est pas demandé d'exprimer les constantes qui apparaissent en fonction de u_0 et de u_1 .

* * * * *

On note \mathscr{C} l'ensemble des suites réelles $x=(x_n)_{n\in\mathbb{Z}}$ indexées par \mathbb{Z} telles que les sous-suites $(x_n)_{n\in\mathbb{N}}$ et $(x_{-n})_{n\in\mathbb{N}}$ convergent.

On admettra que l'ensemble E des suites réelles indexées par \mathbb{Z} est un \mathbb{R} -espace vectoriel.

L'endomorphisme identité de l'espace E sera noté id $_E$.

On définit les applications S et T de $\mathscr C$ dans E par :

$$\begin{array}{lll} \forall x \in \mathscr{C}, \ S(x) = z, & \text{où} & \forall n \in \mathbb{Z}, \ z_n = x_{-n} \\ \text{et} & \forall x \in \mathscr{C}, \ T(x) = y, & \text{où} & \forall n \in \mathbb{Z}, \ y_n = x_{n-1} + x_{n+1} \end{array}$$

- 3. Donner un exemple de suite non constante, élément de \mathscr{C} .
- 4. Montrer que \mathscr{C} est un sous-espace vectoriel de l'espace vectoriel E.
- 5. Prouver que si une suite x est dans \mathscr{C} , elle est bornée.
- 6. Montrer que T est un endomorphisme de \mathscr{C} . On admettra qu'il en est de même de S.
- 7. Soient $F = \{x \in \mathcal{C}, \forall n \in \mathbb{Z}, x_n = x_{-n}\}$ et $G = \{x \in \mathcal{C}, \forall n \in \mathbb{Z}, x_n = -x_{-n}\}$. Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de \mathcal{C} .
- 8. Étude de l'endomorphisme S

Prouver que S est une symétrie de \mathscr{C} dont on précisera les éléments caractéristiques.

9. Étude de l'endomorphisme T

On rappelle qu'une suite x est dans \mathscr{C} lorsque les deux sous-suites $(x_n)_{n\in\mathbb{N}}$ et $(x_{-n})_{n\in\mathbb{N}}$ sont convergentes.

a) Soit λ un réel. Montrer que si $\lambda \notin \{-2, 2\}$, $\operatorname{Ker}(T - \lambda \operatorname{id}_{\mathscr{C}}) = \{0_{\mathscr{C}}\}$ où $0_{\mathscr{C}}$ désigne le vecteur nul de \mathscr{C} .

On pourra utiliser les questions de cours.

- b) L'endomorphisme T est-il injectif?
- c) Déterminer $Ker(T-2 id_{\mathscr{C}})$ et $Ker(T+2 id_{\mathscr{C}})$.
- d) Déterminer alors l'ensemble de toutes les valeurs propres de l'endomorphisme T.
- 10. On munit \mathscr{C} de la norme infinie : si $x \in \mathscr{C}$, $||x||_{\infty} = \sup_{n \in \mathbb{Z}} |x_n|$.

Soit N l'application qui, à tout élément x de \mathscr{C} , associe $N(x) = \sum_{n=0}^{+\infty} \frac{|x_n| + |x_{-n}|}{2^n}$.

- a) Vérifier que, pour tout x de \mathscr{C} , N(x) existe.
- b) Démontrer que l'on définit ainsi une norme sur l'espace \mathscr{C} .
- c) Montrer que S est une isométrie de l'espace vectoriel normé (\mathscr{C}, N) . Est-elle continue?
- d) Prouver que, dans cet espace normé, les sous-espaces vectoriels F et G sont des fermés.
- e) Les deux normes $\| \|_{\infty}$ et N sont-elles équivalentes?

Exercice 19 (d'après E3A 2022 MP)

Soit E un espace euclidien muni d'un produit scalaire $\langle \cdot | \cdot \rangle$ dont la norme est notée $\| \cdot \|$.

1. Questions de cours

a) Soient x et y deux vecteurs de E. Démontrer l'inégalité de Cauchy-Schwarz : $|\langle x\,|\,y\rangle\,| \leqslant \|x\| \, \|y\|$.

On pourra utiliser la fonction $t \mapsto ||x + ty||^2$.

- b) Démontrer qu'on a l'égalité $|\langle x | y \rangle| = ||x|| ||y||$ si, et seulement si, les vecteurs x et y sont colinéaires.
- c) On considère $E = \mathcal{M}_{n,1}(\mathbb{R})$ muni de sa base canonique et du produit scalaire canonique $\langle X | Y \rangle = X^{\mathsf{T}} Y$.

Écrire cette inégalité pour
$$X = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
 et $Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$

$$* * * * * * *$$

Pour toute la suite de l'exercice, on identifie \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$

Partie 1

Soit n un entier naturel supérieur ou égal à 2.

On note $B = \{X \in \mathbb{R}^n, ||X|| \le 1\}.$

On considère l'application F de \mathbb{R}^n vers \mathbb{R} définie par :

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \ F(X) = \sum_{\substack{1 \le i,j \le n \\ i \ne j}} x_i \, x_j$$

Par exemple, pour n = 3:

$$F(X) = x_1x_2 + x_1x_3 + x_2x_1 + x_2x_3 + x_3x_1 + x_3x_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

- 2. Exprimer alors F(X) à l'aide de $S_1(n) = \sum_{i=1}^n x_i$ et de $S_2(n) = \sum_{i=1}^n x_i^2$.
- 3. Montrer que F possède un maximum sur B que l'on notera M.
- 4. Montrer en utilisant la question 1. que M = n 1.
- 5. Déterminer tous les $X \in B$ tels que F(X) = M.

Partie 2

- On note $\mathscr{B} = (e_1, \dots, e_n)$ la base canonique orthonormale pour le produit scalaire $\langle X | Y \rangle = X^{\mathsf{T}} Y$ de \mathbb{R}^n .
- Pour tout couple de vecteurs (X,Y) de \mathbb{R}^n décomposés dans la base $\mathscr{B}: X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, on pose : $\varphi(X,Y) = \frac{1}{x_1} \sum_{i=1}^n (x_i y_i + x_i y_i)$.

on pose : $\varphi(X,Y) = \frac{1}{2} \sum_{\substack{1 \leqslant i,j \leqslant n \\ i \neq j}} (x_i y_j + x_j y_i).$

- Par exemple, pour n = 3, on a $\varphi(X, Y) = x_1y_2 + x_1y_3 + x_2y_1 + x_2y_3 + x_3y_1 + x_3y_2$.
- 6. Pour tout $X \in \mathbb{R}^n$ exprimer F(X) à l'aide de φ .
- 7. écrire la matrice $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ définie pour tout $(i,j) \in [1,n]^2$ par $a_{ij} = \varphi(e_i,e_j)$.
- 8. Justifier l'existence d'une base orthonormale $\mathcal{U} = (u_1, u_2, \dots, u_n)$ constituée de vecteurs propres de la matrice A.
- 9. Vérifier que pour tout couple de vecteurs (X,Y) de $(\mathbb{R}^n)^2$, on a $\varphi(X,Y)=Y^\mathsf{T}\,A\,X=X^\mathsf{T}\,A\,Y$.
- 10. Soit J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les éléments sont égaux à 1.
 - a) Déterminer les valeurs propres de la matrice J.
 - b) En déduire une matrice diagonale Δ semblable à la matrice A.
- 11. Donner l'expression de $\varphi(X,Y)$ en fonction des coordonnées de X et Y dans la base \mathcal{U} .
- 12. Retrouver alors le résultat établi à la question 4.

Exercice 20 (d'après CCINP 2023 - MPI-1)

Dans tout l'exercice, n est un entier naturel non nul.

Pour toute matrice $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$, on note :

$$N(A) = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

1. Démontrer que N est une norme sur $\mathcal{M}_n(\mathbb{R})$.

On munit l'espace $\mathcal{M}_{n,1}(\mathbb{R})$ de la norme $\|\cdot\|_{\infty}$ définie, par :

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}), \ \|X\|_{\infty} = \max_{1 \leqslant i \leqslant n} |x_i|$$

On note S la sphère unité définie par : $S = \{X \in \mathcal{M}_{n,1}(\mathbb{R}) \mid ||X||_{\infty} = 1\}.$

2. Démontrer :

$$\forall X \in S, \forall A \in \mathcal{M}_{n,1}(\mathbb{R}), ||AX||_{\infty} \leq N(A)$$

En déduire, pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, l'existence de $\sup_{X \in S} ||AX||_{\infty}$.

On pose alors, pour toute matrice $A \in \mathscr{M}_n(\mathbb{R})$, $||A||| = \sup_{X \in S} ||AX||_{\infty}$.

3. Démontrer :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \forall A \in \mathcal{M}_{n,1}(\mathbb{R}), ||AX||_{\infty} \leqslant ||A|| ||X||_{\infty}$$

4. Démontrer :

$$\forall A \in \mathscr{M}_{n,1}(\mathbb{R}), \ |||A||| = N(A)$$

5. Application. On considère la matrice $A = \begin{pmatrix} 2 & 0 & -1 \\ 3 & -2 & 3 \\ 5 & 0 & 1 \end{pmatrix}$.

Calculer ||A||.

Exercice 21 (d'après CCINP 2012 - MP-1)

- On note E l'espace vectoriel des applications de classe \mathscr{C}^1 définies sur l'intervalle [0;1] et à valeurs dans \mathbb{R} .
- On pose pour $f \in E$:

$$||f|| = |f(0)| + 2 \int_0^1 |f'(t)| dt$$
 et $||f||' = 2|f(0)| + \int_0^1 |f'(t)| dt$

1. Démontrer que $\|\cdot\|$ définit une norme sur E.

De même, $\|\cdot\|'$ est une norme sur E, il est inutile de le démontrer.

- 2. a) Donner la définition de deux normes équivalentes.
 - b) Démontrer que les deux normes $\|\cdot\|$ et $\|\cdot\|'$ sont équivalentes sur E.
- 3. Toutes les normes sur E sont-elles équivalentes à la norme $\|\cdot\|$?

Exercice 22 (d'après CCINP 2020 - MP-1)

• On note T l'ensemble des suites réelles $t = (t_n)_{n \in \mathbb{N}^*}$ à valeurs dans $\{0, 1, 2\}$:

$$\forall n \in \mathbb{N}^*, \ t_n \in \{0, 1, 2\}$$

- On désigne par ℓ^{∞} l'ensemble des suites réelles $u=(u_n)_{n\in\mathbb{N}^*}$ bornées et on pose $||u||=\sup_{n\in\mathbb{N}^*} \left(|u_n|\right)$.
- On note |y| la partie entière d'un réel y.
- 1. Démontrer que ℓ^{∞} est un espace vectoriel réel et que $u \mapsto ||u||$ est une norme sur ℓ^{∞} .

2. Pour $u=(u_n)_{n\in\mathbb{N}^*}\in\ell^\infty$, montrer que la série de terme général $\frac{u_n}{3^n}$ est convergente. On note alros :

$$\sigma(u) = \sum_{n=1}^{+\infty} \frac{u_n}{3^n}$$

3. Démontrer que l'application σ est une forme linéaire continue sur ℓ^{∞} .

Exercice 23 (d'après Centrale 2021 - MP2)

Dans la suite, on note:

 \times on note $L^1(\mathbb{R})$ l'ensemble des fonctions de \mathbb{R} dans \mathbb{C} continues et intégrables sur \mathbb{R} ;

× pour
$$f \in L^1(\mathbb{R})$$
, on note $||f||_1 = \int_{-\infty}^{+\infty} |f(t)| dt$;

 \times on note $L^{\infty}(\mathbb{R})$ l'ensemble des fonctions de \mathbb{R} dans \mathbb{C} continues et bornées sur \mathbb{R} ;

$$\times$$
 pour $f \in L^{\infty}(\mathbb{R})$, on note $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$.

On admet que $L^1(\mathbb{R})$, $L^{\infty}(\mathbb{R})$ et $\mathscr{C}^k(\mathbb{R})$ $(k \in \mathbb{N})$ sont des sous-espaces vectoriels de $\mathbb{C}^{\mathbb{R}}$. On admet également que $f \mapsto \|f\|_1$ définit une norme sur $L^1(\mathbb{R})$ et que $f \mapsto \|f\|_{\infty}$ définit une norme sur $L^{\infty}(\mathbb{R})$. On dispose ainsi des espaces vectoriels normés $(L^1(\mathbb{R}), \|\cdot\|_1)$ et $(L^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$.

Soit $f \in L^1(\mathbb{R})$. On appelle transformée de Fourier de f et on note \hat{f} la fonction de \mathbb{R} dans \mathbb{C} telle que

$$\forall \xi \in \mathbb{R}, \ \hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-i x \xi} \ dx$$

- 1. Montrer que, pour toute fonction $f \in L^1(\mathbb{R})$, \hat{f} est définie et continue sur \mathbb{R} .
- 2. Montrer que l'application $f \mapsto \hat{f}$ est linéaire continue de l'espace vectoriel normé $(L^1(\mathbb{R}), \|\cdot\|_1)$ dans l'espace vectoriel normé $(L^\infty(\mathbb{R}), \|\cdot\|_\infty)$.
- 3. Soit $f \in L^1(\mathbb{R})$, soit $\lambda \in \mathbb{R}_+^*$ et soit g la fonction de \mathbb{R} dans \mathbb{C} définie par :

$$\forall x \in \mathbb{R}, \ q(x) = f(\lambda x)$$

Montrer que $g \in L^1(\mathbb{R})$ et, pour tout réel ξ , exprimer $\hat{g}(\xi)$ à l'aide de \hat{f} , de ξ et de λ .

Exercice 24 (d'après Centrale 2017 - PSI-2) Notations

- On identifie $\mathcal{M}_{n,1}(\mathbb{C})$ et \mathbb{C}^n .
- $\mathrm{GL}_n(\mathbb{C})$ représente l'ensemble des éléments inversibles de $\mathscr{M}_n(\mathbb{C})$.
- $\operatorname{tr}(M)$ est la trace de la matrice M de $\mathcal{M}_n(\mathbb{C})$.
- $\mathcal{T}_n(\mathbb{C})$ désigne l'ensemble des matrice triangulaires supérieures d'ordre n.
- $0_{1,n}$ est la matrice ligne de taille n dont tous les coefficients sont nuls.

• Pour tout
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{C}^n$$
, on pose $||Y||_{\infty} = \max_{1 \leqslant i \leqslant n} |y_i|$.

• Pour toute matrice $C = (c_{i,j})_{1 \le i,j \le n}$ de $\mathcal{M}_n(\mathbb{C})$, on pose $||C||_0 = \max_{1 \le i,j \le n} |c_{i,j}|$.

On rappelle que $\|\cdot\|_{\infty}$ est une norme sur \mathbb{C}^n et que $\|\cdot\|_0$ est une norme sur $\mathcal{M}_n(\mathbb{C})$.

• Si $A = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ et $B = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ sont deux matrices colonnes de taille 2 à coefficients dans \mathbb{C} , on note [A, B] la matrice $\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$ de $\mathscr{M}_2(\mathbb{C})$.

Préliminaire

1. Une suite $(z_k)_{k\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ est dite périodique s'il existe un entier $p\geqslant 1$ tel que :

$$\forall k \in \mathbb{N}, \ z_{k+p} = z_k$$

L'entier p est alors une période de la suite (z_k) qui est dite p-périodique.

- a) Vérifier qu'une suite périodique est bornée.
- b) Que peut-on dire des suites 1-périodiques?
- c) Vérifier que, si (z_k) est p-périodique, alors : $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, z_{n+kp} = z_n$.
- d) Que peut-on dire des suites qui sont à la fois périodiques et convergentes?
- 2. Vérifier les deux propriétés suivantes.
 - a) $\forall (A,B) \in (\mathcal{M}_n(\mathbb{C}))^2$, $||AB||_0 \leqslant n ||A||_0 \times ||B||_0$.
 - **b)** $\forall A \in \mathcal{M}_n(\mathbb{C}), \forall Y \in \mathbb{C}^n, ||AY||_{\infty} \leq n ||A||_0 \times ||Y||_{\infty}.$

Exercice 25

• Soit $(\mathscr{A}, +, \times, .)$ une \mathbb{K} -algèbre, c'est-à-dire $(\mathscr{A}, +, \times)$ est un anneau et $(\mathscr{A}, +, \cdot)$ est un \mathbb{K} -espace vectoriel, tel que :

$$\forall \alpha \in \mathbb{K}, \ \forall (x,y) \in \mathscr{A}^2, \ (\alpha \cdot x) \times y = x \times (\alpha \cdot y) = \alpha \cdot (x \times y)$$

où $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

• Soit $\|\cdot\|$ une norme sur \mathscr{A} , $\|\cdot\|$ est appelée une norme sous-multiplicative de la \mathbb{K} -algèbre \mathscr{A} , si :

$$\forall (x,y) \in \mathscr{A}^2, \|x \times y\| \leqslant \|x\| \|y\|$$

- Dans tout le problème n et p désignent des entiers naturels non nuls.
- On rappelle que, $\mathcal{M}_{n,p}(\mathbb{K})$ est l'ensemble des matrices à coefficients dans \mathbb{K} ayant n lignes et p colonnes.
- Si n = p, alors $\mathcal{M}_{n,p}(\mathbb{K})$ est noté $\mathcal{M}_n(\mathbb{K})$ et on rappelle aussi que $\mathcal{M}_n(\mathbb{K})$, muni de ses opérations usuelles, est une \mathbb{K} -algèbre.
- Pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, on note $A^0 = I_n$ et $\forall n \in \mathbb{N}$, $A^{n+1} = AA^n$, où I_n est la matrice identité de $\mathcal{M}_n(\mathbb{K})$.
- $GL_n(\mathbb{K})$ désigne le groupe des matrices inversibles de $\mathscr{M}_n(\mathbb{K})$.

Étude de quelques normes sur $\mathcal{M}_n(\mathbb{K})$

On définit sur $\mathcal{M}_n(\mathbb{K})$ la norme notée $\|\cdot\|_{\infty}$ définie par :

$$\forall A = (a_{i,j})_{1 \leqslant i \leqslant n} \in \mathscr{M}_n(\mathbb{K}), \ \|A\|_{\infty} = \max_{\substack{1 \leqslant i \leqslant n, \\ 1 \leqslant j \leqslant n}} (|a_{i,j}|)$$

- 1. Montrer: $\forall (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$, $||AB||_{\infty} \leqslant n ||A||_{\infty} ||B||_{\infty}$.
- 2. Soit N une norme sur $\mathcal{M}_n(\mathbb{K})$.
 - a) On pose $\left(E_i^j\right)_{\substack{1\leqslant i\leqslant n,\\1\leqslant j\leqslant n}}$ la base canonique de $\mathscr{M}_n(\mathbb{K})$.

Soit
$$X = (x_{i,j})_{\substack{1 \leqslant i \leqslant n, \\ 1 \leqslant j \leqslant n}} \in \mathcal{M}_n(\mathbb{K}).$$

Montrer:
$$N(X) \leqslant \left(\sum_{\substack{1 \leqslant i \leqslant n, \\ 1 \leqslant i \leqslant n}} N\left(E_i^j\right)\right) ||X||_{\infty}.$$

b) (i) Montrer que N est une fonction continue de $\mathcal{M}_n(\mathbb{K})$ muni de la norme $\|\cdot\|_{\infty}$ vers \mathbb{R} muni de la valeur absolue.

- (ii) On pose $S_{\infty} = \{X \in \mathcal{M}_n(\mathbb{K}) \mid ||X||_{\infty} = 1\}.$ Montrer qu'il existe $X_0 \in S_{\infty}$ tel que : $\forall X \in S_{\infty}, N(X_0) \leq N(X).$
- (iii) En déduire qu'il existe $\alpha > 0$ tel que : $\forall X \in \mathcal{M}_n(\mathbb{K}), \alpha \|X\|_{\infty} \leq N(X)$.
- c) En déduire que toutes les normes de $\mathcal{M}_n(\mathbb{K})$ sont équivalentes.
- 3. Soit N une norme sur $\mathcal{M}_n(\mathbb{K})$ et soit $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$.
 - a) Montrer qu'il existe un réel strictement positif β tel que

$$N(AB) \leqslant n \beta ||A||_{\infty} ||B||_{\infty}$$

b) Montrer qu'il existe deux réels strictement positifs α et β tels que

$$N(AB) \leqslant n \frac{\beta}{\alpha^2} N(A) N(B)$$

- c) En déduire qu'il existe un réel strictement positif γ tel que γN soit une norme sousmultiplicative sur $\mathcal{M}_n(\mathbb{K})$.
- **4.** Soit N une norme sur $\mathcal{M}_{n,1}(\mathbb{K})$, pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, on pose :

$$||A|| = \sup \left\{ \frac{N(AX)}{N(X)} \mid X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\} \right\}$$

- a) (i) Justifier, pour tout $A \in \mathcal{M}_n(\mathbb{K})$, l'existence de ||A||.
 - (ii) Montrer que, pour tout $A \in \mathcal{M}_n(\mathbb{K})$:

$$||A|| = \sup \{N(AX) \mid X \in \mathcal{M}_{n,1}(\mathbb{K}), \ N(X) = 1\}$$

- (iii) Montrer que $\|\cdot\|$ est une norme sur $\mathcal{M}_n(\mathbb{K})$.
- b) (i) Montrer: $\forall A \in \mathscr{M}_n(\mathbb{K}), \forall X \in \mathscr{M}_{n,1}(\mathbb{K}), N(AX) \leqslant ||A|| N(X).$
 - (ii) En déduire : $\forall (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$, $||AB|| \leq ||A|| ||B||$.

Suites de matrices

On rappelle que si $(A_m)_{m\in\mathbb{N}}$ est une suite d'éléments de $\mathscr{M}_{n,p}(\mathbb{K})$ et si A est une matrice de $\mathscr{M}_{n,p}(\mathbb{K})$, la suite $(A_m)_{m\in\mathbb{N}}$ converge vers A si la suite réelle $(\|A_m - A\|)_{m\in\mathbb{N}}$ converge vers A où $\|\cdot\|$ est une norme donnée sur $\mathscr{M}_{n,p}(\mathbb{K})$, on écrit dans ce cas $\lim_{m\to\infty} A_m = A$.

- 5. Soit $(A_m)_{m\in\mathbb{N}}$ est une suite d'éléments de $\mathscr{M}_{n,p}(\mathbb{K})$ et soit $A\in\mathscr{M}_{n,p}(\mathbb{K})$, on pose pour tout $m\in\mathbb{N}, A_m=\left(a_{i,j}^{(m)}\right)_{1\leqslant i\leqslant n}$, et $A=(a_{i,j})_{1\leqslant i\leqslant n}$, $1\leqslant j\leqslant p$
- **6.** Montrer que la suite $(A_m)_{m\in\mathbb{N}}$ converge vers A si, et seulement si, pour tout $(i,j)\in\mathbb{N}\times\mathbb{N}$ tel que $1\leqslant i\leqslant n$ et $1\leqslant j\leqslant p$, la suite $\left(a_{i,j}^{(m)}\right)_{m\in\mathbb{N}}$ converge vers $a_{i,j}$.

En cas de convergence, on écrit $\lim_{m\to+\infty} A_m = \left(\lim_{m\to+\infty} a_{i,j}^{(m)}\right)_{\substack{1\leqslant i\leqslant n,\\1\leqslant j\leqslant p}}$

- 7. Soit α un réel, on pose pour tout $m \in \mathbb{N}^*$, $A_m = \begin{pmatrix} 1 & -\frac{\alpha}{m} \\ \frac{\alpha}{m} & 1 \end{pmatrix}$.
 - a) Montrer que pour tout $m \in \mathbb{N}^*$, il existe $C_m \in \mathbb{R}$ et $\theta_m \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tels que :

$$A_m = C_m \begin{pmatrix} \cos(\theta_m) & -\sin(\theta_m) \\ \sin(\theta_m) & \cos(\theta_m) \end{pmatrix}$$

b) Déterminer $\lim_{m\to+\infty} A_m^m$.

Séries de matrices

Soit $(A_m)_{m\in\mathbb{N}}$ une suite d'éléments de $\mathcal{M}_{n,p}(\mathbb{K})$.

On pose pour $m \in \mathbb{N}$, $S_m = \sum_{k=0}^m A_k$. On dit que la série de terme général A_m converge si la suite $(S_m)_{m \in \mathbb{N}}$ des sommes partielles converge, sinon la série est dite divergente. En cas de convergence, la limite de la suite $(S_m)_{m \in \mathbb{N}}$ se note $\sum_{k=0}^{+\infty} A_k$.

On dit que la série de terme général A_m est absolument convergente, si la série numérique de terme général $N(A_m)$ converge, avec N une norme définie sur $\mathcal{M}_{n,p}(\mathbb{K})$.

8. Soit $(A_m)_{m\in\mathbb{N}}$ est une suite d'éléments de $\mathcal{M}_{n,p}(\mathbb{K})$, on pose pour tout $m\in\mathbb{N}$, $A_m=\left(a_{i,j}^{(m)}\right)_{\substack{1\leqslant i\leqslant n,\\1\leqslant j\leqslant p}}$

Montrer que la série de terme général A_m converge si, et seulement si, pour tout $(i,j) \in \mathbb{N} \times \mathbb{N}$ tel que $1 \leq i \leq n$ et $1 \leq j \leq p$, la série de terme général $a_{i,j}^{(m)}$ converge.

En cas de convergence, on écrit
$$\sum_{m=0}^{+\infty} A_m = \left(\sum_{m=0}^{+\infty} a_{i,j}^{(m)}\right)_{\substack{1 \le i \le n, \\ 1 \le j \le p}}$$

- 9. Montrer que toute série absolument convergente de $\mathcal{M}_n(\mathbb{K})$ est convergente.
- 10. Soit A une matrice non nulle de $\mathcal{M}_n(\mathbb{K})$ telle que $\sum_{m\in\mathbb{N}} A^m$ converge.

Montrer que $\sum_{m=0}^{+\infty} A^m$ est inversible et déterminer son inverse.

- 11. On pose $B = \begin{pmatrix} \frac{4}{3} & -\frac{5}{6} \\ \frac{5}{3} & -\frac{7}{6} \end{pmatrix}$.
 - a) Montrer que $\sum_{m\in\mathbb{N}} B^m$ est convergente et déterminer sa valeur.
 - **b)** En déduire l'inverse de $\sum_{m=0}^{+\infty} B^m$.

Exponentielle d'une matrice

12. Montrer que, pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, la série de terme général $\frac{1}{m!}A^m$, $m \in \mathbb{N}$, est convergente.

Par la suite, on appelle l'exponentielle d'une matrice A de $\mathcal{M}_n(\mathbb{K})$, la matrice notée $\exp(A)$, telle que $\exp(A) = \sum_{m=0}^{+\infty} \frac{1}{m!} A^m$.

Dans toute la suite du problème, on note exp l'application définie sur $\mathcal{M}_n(\mathbb{K})$.

13. Soit S une matrice de $\mathcal{M}_n(\mathbb{K})$ telle que $S^2 = I_n$.

Déterminer $\exp(S)$ en fonction de I_n et de S.

- 14. a) Soit $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$ tel que AB = BA.
 - Montrer que $\exp(A + B) = \exp(A) \exp(B)$.
 - b) En déduire que si $A \in \mathcal{M}_n(\mathbb{K})$, alors $\exp(A)$ est une matrice inversible et déterminer son inverse en fonction de A.
- **15.** On note, pour tout $(\beta_i)_{1 \leqslant i \leqslant n} \in \mathbb{K}^n$, $\operatorname{Diag}(\beta_i)_{1 \leqslant i \leqslant n}$, la matrice diagonale $(a_{i,j})_{1 \leqslant i \leqslant n}$, de $\mathscr{M}_n(\mathbb{K})$, telle que pour tout $i \in [1, n]$, $a_{i,i} = \beta_i$.
 - $\textbf{\textit{a})} \ \ \text{Montrer}: \ \forall \, (\alpha_i)_{1\leqslant i\leqslant n}\in \mathbb{K}^n, \ \exp\left(\text{Diag}\,(\alpha_i)_{1\leqslant i\leqslant n}\right) = \text{Diag}\,(e^{\alpha_i})_{1\leqslant i\leqslant n}.$

- b) Montrer: $\forall A \in \mathcal{M}_n(\mathbb{K}), \forall P \in GL_n(\mathbb{K}), \exp(P^{-1}AP) = P^{-1}\exp(A)P$.
- c) Soit $T = (t_{i,j})_{1 \leq i \leq n} \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure. $1 \leq j \leq n$

 $\text{Montrer}: \exp(T) = \left(t'_{i,j}\right)_{\substack{1 \leqslant i \leqslant n, \\ 1 \leqslant j \leqslant n}} \text{est aussi une matrice triangulaire supérieure telle que } \forall i \in \llbracket 1, n \rrbracket, \\ t'_{i,i} = \mathrm{e}^{t_{i,i}}.$

d) Soit $A \in \mathscr{M}_n(\mathbb{C})$.

Montrer : $det(exp(A)) = e^{tr(A)}$, où tr(A) désigne la trace de la matrice A.

e) Soit
$$A = \begin{pmatrix} 4 & 1 & 1 \\ 6 & 4 & 2 \\ -10 & -4 & -2 \end{pmatrix}$$
, pour tout réel t , déterminer $\exp(tA)$.

Exercice 26

- Dans ce problème, n désigne un entier naturel ≥ 2 . Le produit scalaire canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ se notera <,> et la norme associée sera notée $\|\cdot\|$; il est défini par $(x,y) \mapsto \langle x,y \rangle = {}^t yx$.
- On considère une application continue $A: \mathbb{R}_+ \mapsto \mathscr{M}_{n,1}(\mathbb{R})$ telle que :

$$\forall t \in \mathbb{R}_+, \ \forall x \in \mathscr{M}_{n,1}(\mathbb{R}), \langle A(t) \ x, x \rangle = {}^t x A(t) x \geqslant 0$$

• On note Σ_A l'ensemble des applications $F: \mathbb{R}_+ \to \mathscr{M}_{n,1}(\mathbb{R})$ deux fois dérivables et vérifiant :

$$\forall t \in \mathbb{R}_+, \ F''(t) = A(t)F(t) \tag{1}$$

Structure de l'ensemble Σ_A

On considère l'application $B: \mathbb{R}_+ \to \mathscr{M}_{2n}(\mathbb{R}), t \mapsto B(t) = \begin{pmatrix} 0 & I_n \\ A(t) & 0 \end{pmatrix}$

L'application B est continue puisque l'application A l'est aussi. On note alors Σ_B l'espace vectoriel réel des solutions sur \mathbb{R}_+ de l'équation différentielle :

$$x' = B(t) x (2)$$

Si $F: \mathbb{R}_+ \to \mathscr{M}_{n,1}(\mathbb{R})$ est une application deux fois dérivable, on lui associe l'application $x_F: \mathbb{R}_+ \to \mathscr{M}_{2n,1}(\mathbb{R})$ définie par :

$$\forall t \in \mathbb{R}_+, x_F(t) = \begin{pmatrix} F(t) \\ F'(t) \end{pmatrix}$$

- 1. Vérifier que Σ_A est un espace vectoriel sur \mathbb{R} .
- 2. Détermination de la dimension de Σ_A
 - a) Soit $F: \mathbb{R}_+ \to \mathcal{M}_{n,1}(\mathbb{R})$ une application deux fois dérivable. Montrer que $F \in \Sigma_A$ si, et seulement si, $x_F \in \Sigma_B$.
 - b) Montrer que l'application $\Phi: \Sigma_A \to \Sigma_B, F \mapsto x_F$ est un isomorphisme d'espaces vectoriels réels.
 - c) En déduire la dimension de l'espace vectoriel réel Σ_A .
- 3. Montrer que, pour tout triplet $(s, u, w) \in \mathbb{R}_+ \times \mathscr{M}_{n,1}(\mathbb{R}) \times \mathscr{M}_{n,1}(\mathbb{R})$, il existe une unique application F, élément de Σ_A , telle que F(s) = v et F'(s) = w.

Quelques propriétés des solutions de l'équation différentielle (1)

4. Soit $F \in \Sigma_A$; on lui associe l'application $f : \mathbb{R}_+ \to \mathbb{R}$ définie par :

$$\forall t \geqslant 0, \ f(t) = \|f'(t)\|^2$$

- a) Montrer que f est deux fois dérivable sur \mathbb{R}_+ et exprimer sa dérivée seconde.
- b) En déduire que la fonction f est convexe sur \mathbb{R}_+ .
- 5. On conserve les hypothèses et les notations de la question 2.1. précédente; on suppose de plus qu'il existe un couple $(t_1, t_2) \in \mathbb{R}^2$ tel que $0 \le t_1 < t_2$ et $F(t_1) = F(t_2) = 0$.
 - a) Montrer que, pour tout $t \in [t_1, t_2], f(t) = 0.$
 - **b)** Montrer que la fonction F est nulle.
- 6. Une famille de solutions non bornées de (1)

Soit $v \in \mathcal{M}_{n,1}(\mathbb{R})$; on note F_v l'élément de Σ_A tel que $F_v(0) = F_v'(0) = v$.

Montrer que si $v \neq 0$ alors la fonction $t \mapsto ||F_v(t)||$ admet une limite infinie en $+\infty$.

7. Des normes sur Σ_A

Soit b un réel strictement positif.

- a) Montrer que l'application $\Psi: \Sigma_A \to \mathscr{M}_{n,1}(\mathbb{R}) \times \mathscr{M}_{n,1}(\mathbb{R}), F \mapsto (F(0), F(b))$ est un isomorphisme d'espaces vectoriels réels.
- **b)** Montrer que l'application $\|.\|_b: F \mapsto \|f(0)\| + \|F(b)\|$ est une norme sur Σ_A .
- c) Montrer également que l'application $\|\cdot\|_{\infty,b}: F \mapsto \sup_{0 < t < b} \|F(t)\|$ est une norme sur Σ_A .
- d) Justifier que les normes $\|\cdot\|_{\infty,b}$ et $\|\cdot\|_b$, sur Σ_A , sont équivalentes.

Exercice 27 (d'après Mines 2023 - MP1)

Soit E un sous-espace vectoriel de \mathbb{K}^n . Soit $\|\cdot\|$ une norme sur E.

Si u et v sont deux applications linéaires pour lesquelles la notation $u \circ v$ a un sens, alors on note uv l'application $u \circ v$. De plus, si u est un endomorphisme d'un espace vectoriel E et $k \in \mathbb{N}^*$, u^k désigne l'application $u \circ \ldots \circ u$, où u apparaît k fois dans l'écriture. Par convention $u^0 = \mathrm{id}_E$.

Soit $u \in \mathcal{L}(E)$ un endomorphisme de E.

1. Après avoir justifié l'existence des bornes supérieures, montrer :

$$\sup_{\substack{x \in E \\ x \neq 0_E}} \frac{\|u(x)\|}{\|x\|} = \sup_{\substack{x \in E \\ \|x\| = 1}} \|u(x)\|$$

2. On note : $|||u||| = \sup_{\substack{x \in E \\ x \neq 0_E}} \frac{||u(x)||}{||x||}$.

Montrer que $\|\cdot\|$ est une norme sur $\mathcal{L}(E)$.

3. Montrer qu'il s'agit d'une norme sous-multiplicative, c'est-à-dire :

$$\forall (u,v) \in (\mathcal{L}(E))^2, \||uv\|| \leqslant \||u\|| \times \||v\||$$

et en déduire une majoration de $|||u^k|||$, pour tout entier naturel k, en fonction de |||u||| et de l'entier k.

Exercice 28 (d'après CCINP 2015 - MP-1)

- Toutes les fonctions étudiées dans ce problème sont à valeurs réelles. On pourra identifier un polynôme et la fonction polynomiale associée.
- On rappelle le théorème d'approximation de Weierstrass pour une fonction continue sur [a, b]: si f est une fonction continue sur [a, b], il existe une suite de fonctions polynômes (P_n) qui converge uniformément vers la fonction f sur [a, b].
- Le problème aborde un certain nombre de situations en lien avec ce théorème qui sera démontré dans la dernière partie.

Partie 1. Exemples et contre-exemples

1. On considère la fonction $h: x \mapsto \frac{1}{x}$ sur l'intervalle]0,1].

Expliquer pourquoi h ne peut être uniformément approchée sur l'intervalle]0,1] par une suite de fonctions polynômes. Analyser ce résultat par rapport au théorème de Weierstrass.

2. Soit N entier naturel non nul, on note \mathscr{P}_n l'espace vectoriel des fonctions polynomiales sur [a,b], de degré inférieur ou égal à N. Justifier que \mathscr{P}_n est une partie fermée de l'espace des applications continues de [a,b] dans \mathbb{R} muni de la norme de la convergence uniforme.

Que peut-on dire d'une fonction qui est limite uniforme sur [a,b] d'une suite de polynômes de degré inférieur ou égal à un entier donné?

3. Cette question illustre la dépendance d'une limite vis-à-vis de la norme choisie.

Soit $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels.

Soient N_1 et N_2 deux applications définies sur $\mathbb{R}[X]$ ainsi :

$$\forall P \in \mathbb{R}[X], \ N_1(P) = \sup_{x \in [-2, -1]} |P(x)| \quad \text{ et } \quad N_2(P) = \sup_{x \in [1, 2]} |P(x)|$$

- a) Vérifier que N_1 est une norme sur $\mathbb{R}[X]$. On admettra que N_2 en est également une.
- $\boldsymbol{b})$ On note f la fonction définie sur l'intervalle [-2,2] ainsi :

$$f: x \mapsto \begin{cases} x^2 & si \ x \in [-1, 1] \\ x^3 & si \ x \in [1, 2] \end{cases}$$

Représenter graphiquement la fonction f sur l'intervalle [-2,2] et justifier l'existence d'une suite de fonctions polynômes (P_n) qui converge uniformément vers la fonction f sur [-2,2].

Démontrer que cette suite de polynômes (P_n) converge dans $\mathbb{R}[X]$ muni de la norme N_1 vers X^2 et étudier sa convergence dans $\mathbb{R}[X]$ muni de la norme N_2 .

Exercice 29 (d'après CCINP 2014 - PSI-1)

• On rappelle que l'application

$$f\mapsto \|f\|_{\infty}=\sup_{t\in[0,1]}|f(t)|$$

définit une norme sur l'espace $E = \mathcal{C}^0([0,1],\mathbb{R})$ des fonctions continues de [0,1] dans \mathbb{R} .

• On note $E_1 = \mathscr{C}^1([0,1],\mathbb{R})$ l'espace des fonctions continûment dérivables de [0,1] dans \mathbb{R} et pour toute fonction $f \in E_1$, on note

$$||f|| = |f(0)| + ||f'||_{\infty}$$

- 1. Comparaison des normes $\|.\|$ et $\|.\|_{\infty}$
 - a) Montrer que l'application $f \mapsto ||f||$ définit une norme sur E_1 .
 - **b)** Montrer:

$$\forall f \in E_1, \|f\|_{\infty} \leqslant \|f\|$$

- c) Les normes $\|.\|$ et $\|.\|_{\infty}$ sont-elles équivalentes sur E_1 ?
- 2. On désigne par $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur [0,1] par

$$\forall n \in \mathbb{N}^*, \ \forall t \in [0, 1], \ f_n(t) = \frac{\sin(n\pi t)}{\sqrt{n}}$$

a) Montrer que la suite (f_n) converge uniformément vers la fonction nulle sur [0,1].

b) On désigne, pour tout entier $n \in \mathbb{N}^*$, par $I_n = L(f_n)$ la longueur de la courbe représentative de f_n . Montrer que

$$\forall n \in \mathbb{N}^*, \ I_n \geqslant \sqrt{n} \frac{\pi}{2}$$

- c) L'application $L: f \mapsto L(f)$ est-elle continue sur $(E_1, \|.\|_{\infty})$?
- d) L'application $L: f \mapsto L(f)$ est-elle continue sur $(E_1, ||.||)$?

Exercice 30 (d'après CCINP 2014 - PC-1)

Norme subordonnée et mesure de Lozinskii

• Soit n un entier naturel non nul. Dans toute cette partie, on note $\|\cdot\|$ une certaine norme sur le \mathbb{K} -espace vectoriel \mathbb{K}^n .

On définit l'ensemble : $\mathscr{B} = \{x \in \mathbb{K}^n \text{ tel que } ||x|| = 1\}.$

- Pour $A \in \mathcal{M}_n(\mathbb{K})$, on définit : $|||A||| = \sup_{x \in \mathcal{B}} (||Ax||)$ (l'existence de cette borne supérieure sera établie dans la question II.1.c).
- On admet que l'application $A \mapsto |||A|||$ définit ainsi une norme $||| \cdot |||$ sur l'espace vectoriel $\mathcal{M}_n(\mathbb{K})$ qui s'appelle la norme subordonnée à $|| \cdot ||$: en effet, elle dépend du choix de la norme $|| \cdot ||$.
- 1. a) Rappeler la définition d'une norme sur \mathbb{K}^n .
 - b) Vérifier que l'application $x \mapsto ||Ax||$ est continue sur \mathbb{K}^n .
 - c) Montrer l'existence de $x_0 \in \mathcal{B}$ tel que : $\forall x \in \mathcal{B}, ||Ax|| \leq ||Ax_0||$. Cela justifie donc la définition de $|||A||| = \sup_{x \in \mathcal{B}} (||Ax||)$ et on a alors $|||A||| = ||Ax_0||$.
 - d) Montrer que $||I_n|| = 1$.
 - e) Établir que pour tout $x \in \mathbb{K}^n$ et $A \in \mathcal{M}_n(\mathbb{K})$, on a : $||Ax|| \leq |||A||| \cdot ||x||$.
 - f) Montrer que, pour tout $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_n(\mathbb{K})$, on a :

$$|||A||| - |||B||| \le |||A - B|||$$
 et $|||AB||| \le |||A||| \cdot ||B|||$.

- 2. Montrer que, pour tout $\lambda \in \mathbb{C}$, on a : $\operatorname{Re}(\lambda) = \lim_{u \to 0^+} \left(\frac{|1 + u\lambda| 1}{u}\right)$.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On se propose dans cette question de montrer l'existence du réel :

$$\mu(A) = \lim_{u \to 0^+} \left(\frac{\||I_n + uA\|| - 1}{u} \right)$$

Ce réel est appelé mesure de Lozinskiĭ de A (il dépend du choix de la norme initiale). Pour u > 0, on note $\mu(A, u) = \frac{\||I_n + uA|| - 1}{u}$.

a) Montrer que pour tout u et v éléments de \mathbb{R}_+^* :

$$\mu(A, u) - \mu(A, v) = \||u^{-1}I_n + A\|| - \||v^{-1}I_n + A\|| - (u^{-1} - v^{-1})$$

- b) En déduire que si $0 < u \le v$, alors $\mu(A, u) \mu(A, v) \le 0$.
- c) Vérifier que pour tout u > 0, on a : $-\|A\| \le \mu(A, u) \le \|A\|$.
- d) En déduire l'existence du réel $\mu(A) = \lim_{u \to 0^+} (\mu(A, u))$.
- 4. On suppose dans cette question que $\mathbb{K} = \mathbb{C}$. Soit $\lambda \in \mathrm{Sp}_{\mathbb{C}}(A)$.
 - a) Montrer qu'il existe $x \in \mathbb{C}^n$ tel que $Ax = \lambda x$, ||x|| = 1 et puis que, pour tout réel u strictement positif, on a : $||((I_n + uA)x)|| = |1 + u\lambda|$.
 - **b)** En déduire que $Re(\lambda) \leq \mu(A)$.
 - c) Donner une condition suffisante sur $\mu(A)$ pour que A soit stable.

Exercice 31

Étudier la convergence de la suite $(X^n)_{n\in\mathbb{N}}$ dans $\mathbb{R}[X]$ lorsque l'espace $\mathbb{R}[X]$ est muni de la norme $\|\cdot\|$ définie par :

a.
$$||P|| = \int_0^1 |P(t)| dt$$
. **b.** $||\sum_{k=0}^n a_k X^k|| = \max_{0 \leqslant k \leqslant n} |a_k|$.

Exercice 32

Étudier la continuité de l'évaluation $\varphi : \mathbb{R}[X] \to \mathbb{R}, P \mapsto P(0)$, lorsque :

- a. l'espace $\mathbb{R}[X]$ est muni de la norme $\|\cdot\|$ définie par $\|P\| = \int_0^1 |P(t)| \ dt$.
- $\pmb{b}.$ l'espace $\mathbb{R}[X]$ est muni de la norme $\|\cdot\|$ définie par :

$$\|\sum_{k=0}^{n} a_k X^k\| = \max_{0 \le k \le n} |a_k|$$

Exercice 33 (d'après EPITA 2024)

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, son coefficient en ligne i et colonne j sera noté $(A)_{i,j}$ ou $A_{i,j}$ lorsqu'il n'y a pas d'ambiguité.

On munit $\mathscr{M}_n(\mathbb{C})$ de la norme $\|\cdot\|_{\infty}$ définie par : $\|A\|_{\infty} = \max_{(i,j) \in \llbracket 1,n \rrbracket^2} |A_{i,j}|$.

On définit pour tout entier naturel k le polynôme : $E_k(X) = \sum_{p=0}^k \frac{1}{p!} X^p$.

On définit l'exponentielle d'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ comme étant, lorsqu'elle existe, la limite de la suite $\left(\sum_{p=0}^k \frac{1}{p!} A^p\right)_{k \in \mathbb{N}}$.

- 5. Démontrer: $\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$, $||AB||_{\infty} \leqslant n ||A||_{\infty} ||B||_{\infty}$.
- **6.** Démontrer par récurrence : $\forall A \in \mathcal{M}_n(\mathbb{C}), \, \forall p \in \mathbb{N}^*, \, \|A^p\|_\infty \leqslant n^{p-1} \, \|A\|_\infty^p$
- 7. Montrer que, pour tout $A \in \mathcal{M}_n(\mathbb{C})$, $(E_k(A))_{k \in \mathbb{N}}$ converge dans $\mathcal{M}_n(\mathbb{C})$.

$$\textbf{8. Soit } (\lambda_1,\ldots,\lambda_n) \in \mathbb{R}^n \text{ et soit } D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}. \text{ D\'emontrer } : \mathbf{e}^D = \begin{pmatrix} \mathbf{e}^{\lambda_1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbf{e}^{\lambda_n} \end{pmatrix}.$$

- 9. Soit $(A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$ et soit $P \in GL_n(\mathbb{C})$ tels que : $A = PBP^{-1}$. Démontrer : $e^A = Pe^BP^{-1}$.
- 10. En reprenant la matrice A de la partie I, déterminer e^A .
- 11. Soit A et soit B deux matrices qui commutent.

On pose, pour tout
$$N \in \mathbb{N}$$
: $\Delta_N = \left(\sum_{i=0}^N \frac{1}{i!} A^i\right) \left(\sum_{j=0}^N \frac{1}{j!} B^j\right) - \sum_{k=0}^N \frac{(A+B)^k}{k!}$.

Démontrer que, pour tout $N \in \mathbb{N}$: $\Delta_N = \sum_{k=N+1}^{2N} \sum_{\substack{i+j=k \ 0 \leqslant i \leqslant N \ 0 \leqslant j \leqslant N}} \frac{1}{i!} \frac{1}{j!} A^i B^j$ et en déduire : $e^{A+B} = e^A e^B$.

12. Soit $A \in \mathcal{M}_n(\mathbb{C})$. En déduire que e^A est inversible et déterminer son inverse.