DM2

- 1. Soit X une variable aléatoire à valeurs dans \mathbb{N} , définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.
 - a) (i) Démontrer :

$$\forall k \in \mathbb{N}^*, \quad \mathbb{P}([X = k]) = \mathbb{P}([X > k - 1]) - \mathbb{P}([X > k])$$

(ii) En déduire, pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=0}^{n} k \, \mathbb{P}([X=k]) = \sum_{k=0}^{n-1} \mathbb{P}([X>k]) - n \, \mathbb{P}([X>n])$$

- b) On suppose que la série $\sum_{k\geqslant 0}\mathbb{P}([X>k])$ est convergente. Démontrer que X admet une espérance.
- c) Réciproquement, on suppose que X admet une espérance. Démontrer alors que la suite $\left(n\,\mathbb{P}([X>n])\right)_{n\in\mathbb{N}}$ tend vers 0, puis que la série $\sum\limits_{k\geqslant 0}\mathbb{P}([X>k])$ est convergente et enfin :

$$\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}([X > k])$$

- 2. Une application : soit n et N deux entiers naturels non nuls. On dispose d'une urne qui contient N boules indiscernables au toucher numérotées de 1 à N. On effectue dans cette urne, n tirages successifs avec remise d'une boule et on note X le plus grand nombre obtenu.
 - a) Pour tout $i \in [1, n]$, on note E_i la variable aléatoire qui donne le résultat du $i^{\text{ème}}$ tirage. Ces variables aléatoires sont indépendantes car les tirages le sont.
 - (i) Soit $i \in [1, n]$. Donner, en justifiant, la loi de E_i .
 - (ii) Exprimer la v.a.r. X en fonction des v.a.r. E_1, \ldots, E_n .
 - (iii) Soit $k \in \mathbb{N}^*$. Démontrer :

$$\mathbb{P}([X=k]) = \mathbb{P}([X \leqslant k]) - \mathbb{P}([X \leqslant k-1])$$

- (iv) En déduire la loi de X.
- b) À l'aide des questions précédentes, déterminer l'espérance de X en fonction de n et N.