DS4 (/91)

EXERCICE 1 (/17)

On note :
$$A = \begin{pmatrix} -4 & 2 & -2 \\ -6 & 4 & -6 \\ -1 & 1 & -3 \end{pmatrix}$$
.

- 1. a) Déterminer les valeurs propres de A.
 - 1 pt : début de calcul convenable de $\chi_A(X) = \det \left(\, X \, I_3 A \, \right)$

• 1 pt :
$$\chi_A(X) = -\begin{vmatrix} X+2 & -6X-12 \\ X+2 & -(X^2+7X+10) \end{vmatrix}$$

- 1 pt : $\chi_A(X) = (X+2)^2 (X-1)$
- b) Déterminer les sous-espaces propres associés.
 - 3 pts:

× 1 pt :
$$U = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_{-2}(A) \iff -2x + 2y - 2z = 0$$

$$\times$$
 1 pt : $E_{-2}(A) = \text{Vect}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}\right)$

$$\times$$
 1 pt : $\mathcal{F} = \left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}\right)$ est libre et génératrice et donc une base de $E_{-2}(A)$

• 3 pts:

$$\times$$
 1 pt : $U = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_1(A) \Leftrightarrow \begin{cases} -5x & = -10z \\ y & = 6z \end{cases}$

$$\times$$
 1 **pt** : $E_1(A) = \operatorname{Vect} \left(\begin{pmatrix} 2 \\ 6 \\ 1 \end{pmatrix} \right)$

$$imes$$
 1 pt : $\mathcal{F} = \begin{pmatrix} 2 \\ 6 \\ 1 \end{pmatrix}$ est libre et génératrice et donc une base de $E_1(A)$

c) En déduire que A est diagonalisable et exhiber une matrice $P \in GL_3(\mathbb{R})$ et une matrice diagonale $D \in \mathcal{M}_3(\mathbb{R})$ telles que :

$$A = P D P^{-1}$$

- 1 pt : dim $(E_{-2}(A))$ + dim $(E_1(A))$ = 2 + 1 = 3 = dim $(\mathcal{M}_{3,1}(\mathbb{R}))$ donc A diagonalisable
- 1 pt : $P = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 0 & 6 \\ 0 & 1 & 1 \end{pmatrix}$ (concaténation des vecteurs propres des bases déterminées

précédemment) et
$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2. On considère trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = -4u_n + 2v_n - 2w_n \\ v_{n+1} = -6u_n + 4v_n - 6w_n \\ w_{n+1} = -u_n + v_n - 3w_n \end{cases}$$

Pour tout
$$n \in \mathbb{N}$$
, on note : $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$ et $Y_n = P^{-1} X_n = \begin{pmatrix} \alpha_n \\ \beta_n \\ \gamma_n \end{pmatrix}$.

- a) Pour tout $n \in \mathbb{N}$, exprimer Y_n en fonction de α_0 , β_0 , γ_0 et n.
 - 1 pt : par récurrence $\forall n \in \mathbb{N}, X_n = A^n X_0$.
 - 1 pt : $X_n = A^n X_0 = (P \times D \times P^{-1})^n X_0 = P \times D^n \times P^{-1} X_0$

• 1 pt:
$$Y_n = P^{-1} X_n = D^n \times P^{-1} X_0 = \begin{pmatrix} (-2)^n & \alpha_0 \\ (-2)^n & \beta_0 \\ \gamma_0 \end{pmatrix}$$

b) À quelle condition sur (u_0, v_0, w_0) les suites $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ convergent-elles simultanément? Expliciter alors ces suites.

• 1 pt:
$$X_n = \begin{pmatrix} (-2)^n & \alpha_0 - (-2)^n & \beta_0 + 2 & \gamma_0 \\ & (-2)^n & \alpha_0 + 6 & \gamma_0 \\ & & (-2)^n & \beta_0 + \gamma_0 \end{pmatrix}$$

Ainsi: $u_n = \alpha_0 \left(-2 \right)^n - \beta_0 \left(-2 \right)^n + 2 \gamma_0; \ v_n = \alpha_0 \left(-2 \right)^n + 6 \gamma_0; \ w_n = \beta_0 \left(-2 \right)^n + \gamma_0$

- 1 pt : comme $((-2)^n)_{n\in\mathbb{N}}$ est divergente, (v_n) est convergente $\Leftrightarrow \alpha_0=0$
- 0 pt : de même, (w_n) est convergente $\Leftrightarrow \beta_0 = 0$
- 1 pt : dans ce cas : $\forall n \in \mathbb{N}, u_n = 2 \gamma_0, v_n = 6 \gamma_0$ et $w_n = \gamma_0$

EXERCICE 2 (/ 20)

Pour tout $n \in \mathbb{N}$, on note :

$$f_n: x \mapsto e^{-x\sqrt{n}}$$

et on note $f: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$ la somme de la série de fonctions $\sum f_n$.

- 3. Déterminer l'ensemble de définition D de f.
 - 1 pt : cas $x_0 = 0$, $\sum 1$ diverge grossièrement
 - 1 pt : cas $x_0 < 0$, $\sum f_n(x_0)$ diverge grossièrement
 - 2 pts : cas $x_0 > 0$

$$\times 1 \text{ pt} : e^{-x_0 \times \sqrt{n}} = O_{n \to +\infty} \left(\frac{1}{n^2}\right)$$

- × 1 pt : critère des SATP écrit correctement
- 4. Démontrer que f est continue sur D.
 - 1 pt : Caractère \mathscr{C}^0 pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathscr{C}^0 sur I
 - 3 pts : Convergence uniforme (par convergence normale sur tout segment)

$$\times$$
 1 pt : $\left| \mathbf{e}^{-x\sqrt{n}} \right| = \mathbf{e}^{-x\sqrt{n}} \leqslant \mathbf{e}^{-a\sqrt{n}}$ pour tout $x \in [a,b]$

- $\times \mathbf{1} \mathbf{pt} : 0 \leqslant \|f_n\|_{\infty,[a,b]} \leqslant \mathbf{e}^{-a\sqrt{n}}$
- imes 1 pt : par critère de comparaison des SATP, la série $\sum \ \|f_n\|_{\infty,[a,b]}$ est convergente
- 5. Calculer la limite de f en $+\infty$.
 - 2 pts : Existence d'une limite finie
 - \times **1 pt** : $\ell_0 = 1$
 - \times 1 pt : si $n \geqslant 1$, $\ell_n = 0$
 - 2 pts : Convergence uniforme (par convergence normale)
 - \times 1 pt : 0 \leqslant $||f_n||_{\infty,[1,+\infty[}$ \leqslant $e^{-\sqrt{n}}$
 - $_{ imes}$ 1 pt : par critère de comparaison des SATP, la série $\sum \ \|f_n\|_{\infty,[1,+\infty[}$ est convergente
- 6. Démontrer que, pour tout $x \in D$: $\int_0^{+\infty} e^{-x\sqrt{t}} dt \leqslant f(x) \leqslant 1 + \int_0^{+\infty} e^{-x\sqrt{t}} dt$.
 - 1 pt : pour tout $k \in \mathbb{N}$ et tout $t \in [k, k+1]$, $e^{-x\sqrt{k}} \geqslant e^{-x\sqrt{t}} \leqslant e^{-x\sqrt{k+1}}$
 - 1 pt : $\sum_{k=1}^{n+1} e^{-x\sqrt{k}} \le \int_0^{n+1} e^{-x\sqrt{t}} dt \le \sum_{k=0}^{n} e^{-x\sqrt{k}}$ (somme FINIE)
 - 1 pt : l'intégrale $\int_0^{+\infty} \ \mathrm{e}^{-x\sqrt{t}} \ dt$ est convergente donc $\int_0^n \ \underset{n \to +\infty}{\longrightarrow} \ \int_0^{+\infty}$
 - 1 pt : $\lim_{n \to +\infty} \left(\sum_{k=1}^{n+1} \mathbf{e}^{-x\sqrt{k}}\right) = \sum_{k=0}^{+\infty} \mathbf{e}^{-x\sqrt{k}} = f(x)$ par CV de la série numérique $\sum f_n(x)$
- 7. En déduire un équivalent de f au voisinage de 0.
 - 2 pts: $\int_{0}^{+\infty} e^{-x\sqrt{t}} dt = 2 \int_{0}^{+\infty} u e^{-xu} du = \frac{2}{x^2}$ par IPP
 - 1 pt : $1 \leqslant \frac{f(x)}{\frac{2}{x^2}} \leqslant \frac{x^2}{2} + 1$
 - 1 pt : théorème d'encadrement écrit correctement

PROBLÈME

• Dans tout le problème, I désigne l'intervalle $]0,+\infty[.$

A. Une intégrale à paramètre

• Pour tout $x \in \mathbb{R}$ on pose, sous réserve d'existence :

$$F(x) = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u(u+x)}} du \qquad \text{et} \qquad K = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du$$

- 8. Démontrer que $\psi: u \mapsto \frac{\mathrm{e}^{-u}}{\sqrt{u}}$ est intégrable sur I.
 - 1 pt : ψ est continue sur $]0,+\infty[$. Ainsi, l'intégrale $\int_0^{+\infty} \psi(u) \ du$ est impropre à la fois en 0 et en $+\infty$
 - 1 pt : $\psi(u) \sim \frac{1}{u^{\frac{3}{2}}}$ et th comparaison intégrales généralisées
 - 1 pt : $\psi(u) {\displaystyle \mathop{o}_{u \to +\infty}} \left(\frac{1}{\sqrt{u}} \right)$ et th comparaison intégrales généralisées

- 9. Déterminer les valeurs de x pour lesquelles F(x) est définie.
 - 2 pts : Soit $x_0 \in \mathbb{R}$. La fonction $f_{x_0}: u \mapsto \frac{\mathrm{e}^{-u}}{\sqrt{u} \left(u + x_0 \right)}$ est continue sur
 - \times **0 pt** :]0, + ∞ [**si** $x_0 \ge 0$
 - \times **2 pts**: $]0, x_0[\cup]x_0, +\infty[$ **si** $x_0 < 0$.

De plus : $\lim_{u\to x_0} f_{x_0}(u) = \infty$ et ainsi f_x n'est pas continue par morceaux sur $]0,+\infty[$

• 1 pt : Cas où x = 0

 $f_x(u) \sim \frac{1}{u^{\frac{3}{2}}}$ et donc non intégrable en 0

- 2 pts : Cas où x>0 : intégrable en 0 et en $+\infty$
- 10. Montrer que la fonction F est de classe \mathscr{C}^1 sur I et exprimer F'(x) sous forme intégrale.
 - 2 pts : Caractère \mathscr{C}^1 étude « en x » pour tout $u>0,\ \underline{f}_u:x\mapsto \frac{\mathbf{e}^{-u}}{\sqrt{u}\,(u+x)}$ est de

classe \mathscr{C}^1 De plus : $f'_u(x) = \frac{e^{-u}}{\sqrt{u}} \frac{-1}{(u+x)^2}$

- 3 pts : Intégrabilité (par domination) étude « en t »
 - \times 1 pt : intégrabilité sans forcément dominer pour tout $x \in \mathbb{R}, u \mapsto \underline{f}_t^{(0)}(u)$ est intégrable sur $]0,+\infty[$ d'après la question précédente
 - × 2 pts : intégrabilité par domination sur tout segment pour tout $x \in \mathbb{R}, \ u \mapsto \underline{f}_u^{(1)}(x)$ est continue (par morceaux) sur $]0,+\infty[$

 $\forall x \in [a, b], \ \forall u \in]0, +\infty[, \ \left| \frac{f_u^{(1)}(x)}{u} \right| \le \frac{e^{-u}}{a^2 \sqrt{u}} = \frac{1}{a^2} \psi(u)$

- 11. En déduire que pour tout $x \in I$, $xF'(x) \left(x \frac{1}{2}\right)F(x) = -K$.
 - 3 pts:
 - \times 1 pt : sous réserve de convergence, par IPP

$$\times \mathbf{1} \mathbf{pt} : F(x) = \left[\frac{2\sqrt{u} e^{-u}}{x+u} \right]_0^{+\infty} + \int_0^{+\infty} \frac{2\sqrt{u} e^{-u}}{x+u} du + \int_0^{+\infty} \frac{2\sqrt{u} e^{-u}}{(x+u)^2} du$$

$$= \int_0^{+\infty} \frac{2u e^{-u}}{\sqrt{u} (x+u)} du + 2 \int_0^{+\infty} \frac{u e^{-u}}{\sqrt{u} (x+u)^2} du$$

- × 1 pt : le crochet vaut 0 + convergence
- 1 pt 2K 2xF(x) + F(x) 2xF'(x)

$$= 2\int_{0}^{+\infty} \frac{\mathbf{e}^{-u}}{\sqrt{u}} du - 2x \int_{0}^{+\infty} \frac{2u \, \mathbf{e}^{-u}}{\sqrt{u} \, (x+u)} du + \int_{0}^{+\infty} \frac{\mathbf{e}^{-u}}{\sqrt{u} \, (x+u)} du - 2x \int_{0}^{+\infty} \frac{\mathbf{e}^{-u}}{\sqrt{u} \, (x+u)^{2}} du$$

$$= \text{mise sous même dénominateur}$$

- = mise sous meme denominati
- = F(x)
- 12. Pour tout $x \in I$, on pose $G(x) = \sqrt{x} e^{-x} F(x)$.

Montrer qu'il existe une constante réelle C telle que pour tout $x \in I$: G(x) = C - K $\int_0^x \frac{e^{-t}}{\sqrt{t}} dt$.

- 1 pt : G est dérivable sur I par produit de fonctions qui le sont
- 1 pt : $G'(x) = -K \frac{e^{-x}}{\sqrt{x}}$ d'après la question précédente

- 1 pt : $H: x \mapsto \int_0^x \frac{\mathbf{e}^{-t}}{\sqrt{t}} dt$ est la primitive qui s'annule en 0 donc de dérivée $x \mapsto \frac{\mathbf{e}^{-x}}{\sqrt{x}}$
- 0 pt : G' = -KH' donc G et -KH sont égales à une constante près
- 13. Déterminer les limites de G en 0 et $+\infty$, et en déduire la valeur de K.
 - 1 pt : $\lim_{x \to +\infty} G(x) = C K$ $\int_0^{+\infty} \frac{\mathbf{e}^{-\sqrt{t}}}{t} dt = C K^2$ d'après la question précédente
 - 1 pt : $F(x) \leqslant \frac{1}{x} K$ donc $\lim_{x \to +\infty} F(x) = 0$ et $\lim_{x \to +\infty} G(x) = 0$
 - 1 pt : $\lim_{x\to 0} G(x) = C$ d'après la question précédente
 - 4 pts : Limite en 0 en exploitant l'expression $G(x) = \frac{\sqrt{x}}{e^x} \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}(u+x)} du$
 - \times 1 pt : changement de variable affine u = xt alors :

$$\sqrt{x}F(x) = \int_0^{+\infty} \frac{x\sqrt{x}e^{-xt}dt}{\sqrt{xt}(xt+x)} = \int_0^{+\infty} \frac{e^{-xt}dt}{\sqrt{t}(1+t)}$$

× 1 pt : Existence d'une limite finie - étude « en x » $\lim_{x \to 0} \frac{e^{-xt} dt}{\sqrt{t}(1+t)} = \frac{1}{\sqrt{t}(1+t)}$

et la fonction $t\mapsto \frac{1}{\sqrt{t}\left(1+t\right)}$ est continue par morceaux sur I

pour tout $x \in \mathbb{R}_+$, $t \mapsto \frac{\mathbf{e}^{-xt}}{\sqrt{t}(1+t)}$ est est continue (par morceaux) sur $]0, +\infty[$ $\forall x \in \mathbb{R}_+, \ \forall t \in]0, +\infty[, \ \left| \frac{\mathbf{e}^{-xt}}{\sqrt{t}(1+t)} \right| \ \leqslant \ \frac{1}{\sqrt{t}(1+t)}$

B. Étude de deux séries de fonctions

• Dans toute cette partie, on définit les fonctions :

$$f: x \mapsto \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}}$$
 et $g: x \mapsto \sum_{n=0}^{+\infty} \sqrt{n} e^{-nx}$

- 14. Montrer que f et g sont définies et continues sur I.
 - 1 pt : Caractère \mathscr{C}^0 pour tout $n \in \mathbb{N}$, la fonction $f_n : x \mapsto \frac{\mathbf{e}^{-nx}}{\sqrt{n}}$ est de classe \mathscr{C}^0 sur I
 - 3 pts : Convergence uniforme (par convergence normale sur tout segment [a,b])

$$imes$$
 1 pt : $\left| \frac{\mathbf{e}^{-nx}}{\sqrt{n}} \right| = \frac{\mathbf{e}^{-nx}}{\sqrt{n}} \leqslant \frac{\mathbf{e}^{-na}}{\sqrt{n}}$ pour tout $x \in [a,b]$

$$\times \ \mathbf{1} \ \mathbf{pt} : 0 \ \leqslant \ \|f_n\|_{\infty,[a,b]} \ \leqslant \ \frac{\mathbf{e}^{-n \, a}}{\sqrt{n}}$$

- \times 1 pt : par critère de comparaison des SATP, la série $\sum \ \|f_n\|_{\infty,[a,b]}$ est convergente
- 1 pt : on agit de la même manière pour g

- 15. Montrer que pour tout $x \in I$: $\int_{1}^{+\infty} \frac{e^{-ux}}{\sqrt{u}} du \leqslant f(x) \leqslant \int_{0}^{+\infty} \frac{e^{-ux}}{\sqrt{u}} du$. En déduire un équivalent de f en 0.

• 1 pt : si
$$u \in [k, k+1]$$
, $\frac{e^{-(k+1)x}}{\sqrt{k+1}} \leqslant \frac{e^{-ux}}{\sqrt{u}} \leqslant \frac{e^{-kx}}{\sqrt{k}}$

$$\mathbf{donc} \quad \frac{\mathbf{e}^{-(k+1)\,x}}{\sqrt{k+1}} = \int_{k}^{k+1} \; \frac{\mathbf{e}^{-(k+1)\,x}}{\sqrt{k+1}} \; du \; \leqslant \; \int_{k}^{k+1} \; \frac{\mathbf{e}^{-u\,x}}{\sqrt{u}} \; du \; \leqslant \; \int_{k}^{k+1} \; \frac{\mathbf{e}^{-k\,x}}{\sqrt{k}} \; du = \frac{\mathbf{e}^{-k\,x}}{\sqrt{k}}$$

• 1 pt :
$$\sum_{k=1}^{N+2} \frac{e^{-kx}}{\sqrt{k}} \le \int_0^{N+1} \frac{e^{-ux}}{\sqrt{u}} du \ \left(\le \sum_{k=0}^{N+1} \frac{e^{-kx}}{\sqrt{k}} \right)$$

et
$$\left(\sum_{k=2}^{N+2} \frac{e^{-kx}}{\sqrt{k}} \leqslant \right) \int_{1}^{N+1} \frac{e^{-ux}}{\sqrt{u}} du \leqslant \sum_{k=1}^{N+1} \frac{e^{-kx}}{\sqrt{k}} \right)$$

- 1 pt : passage à la limite pour obtenir le résultat
- 1 pt : on pose v = ux
- 1 pt : par encadrement $\lim_{x\to 0} \sqrt{x} \, f(x) = \int_1^{N+1} \; \frac{{\rm e}^{-v}}{\sqrt{v}} \; dv = \sqrt{\pi} \; {\rm vu} \; {\rm pr\'ec\'edemment}$
- 16. Montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} 2\sqrt{n}\right)_{n \ge 1}$ converge.
 - 1 pt : la suite est décroissante (calcul + mise au même dénominateur)
 - 1 pt : $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geqslant \int_{1}^{n+1} \frac{1}{\sqrt{t}} dt = 2\sqrt{n+1} 2\sqrt{1}$ par comparaison série-intégrale
 - 1 pt : ainsi la suite est minorée par -2
- 17. Démontrer que pour tout x > 0, la série $\sum_{n \ge 1} \left(\sum_{k=1}^n \frac{1}{\sqrt{k}} \right) e^{-nx}$ converge et exprimer sa somme h(x) en fonction de f(x) pour tout $x \in I$.
 - 1 pt:
 - 1 pt:
 - 1 pt:
- 18. En déduire un équivalent de h en 0.

Montrer alors : $g(x) \underset{x\to 0}{\sim} \frac{\sqrt{\pi}}{2 x^{3/2}}$

- 1 pt:
- 1 pt:
- 1 pt:
- C. Séries de fonctions associées à des ensembles d'entiers
- À tout ensemble $A \subseteq \mathbb{N}$ on associe la suite (a_n) définie par :

$$a_n = \begin{cases} 1 & si \ n \in A \\ 0 & sinon \end{cases}$$

• Soit I_A l'ensemble des réels $x\geqslant 0$ pour lesquels la série $\sum\limits_{n\geqslant 0}a_n$ e^{-nx} converge.

- Mathématiques
- On pose $f_A(x) = \sum_{n=0}^{+\infty} a_n e^{-nx}$ pour tout $x \in I_A$.
- Enfin, sous réserve d'existence, on pose $\Phi(A) = \lim_{x \to 0} x f_A(x)$ et on note S l'ensemble des parties $A \subseteq \mathbb{N}$ pour lesquelles $\Phi(A)$ existe.
- 19. Quel est l'ensemble I_a si A est fini?

Si A est infini, montrer que l'on peut extraire une suite (b_n) de la suite (a_n) telle que pour tout $n \in \mathbb{N}$, $b_n = 1$. Déterminer I_A dans ce cas.

- 1 pt : si A est fini, la suite (a_n) est nulle sauf pour un nombre fini de coefficients égaux à 1
- 1 pt : dans ce cas $I_A = \mathbb{R}_+$
- 3 pts:
 - \times 1 pt : si A est infini, on sélectionne les éléments de (a_n) qui sont non nulles. Cela forme une suite extraite de (a_n) constante égale à 1
 - × 1 pt : si x = 0, la série $\sum a_n$ est (G)DV

$$imes$$
 1 pt : si $x > 0$, $\sum_{n=0}^{N} a_n e^{-nx} \leqslant \sum_{n=0}^{N} e^{-nx} = \frac{1}{1 - e^{-x}}$ et donc $I_a = \mathbb{R}_+^*$

20. Soit $A \in S$ et (a_n) la suite associée. Pour tout entier naturel n, on note A(n) l'ensemble des éléments de A qui sont $\leq n$. Vérifier que pour tout x > 0 la série $\sum_{n \geq 0} \operatorname{Card}(A(n))$ e^{-nx} converge et :

$$\sum_{n=0}^{+\infty} \operatorname{Card}(A(n)) e^{-nx} = \frac{f_A(x)}{1 - e^{-x}}$$

- 1 pt:
- 1 pt:
- 1 pt:
- Dans la question suivante, $A = A_1$ désigne l'ensemble des carrés d'entiers naturels non nuls.
- **21.** Montrer que si x > 0, $\frac{f_{A_1}(x)}{1 e^{-x}} = \sum_{n=0}^{+\infty} \lfloor \sqrt{n} \rfloor e^{-nx}$ où $\lfloor \cdot \rfloor$ désigne la partie entière.

En déduire un encadrement de $\sum_{n=0}^{+\infty} \sqrt{n} e^{-nx} - \frac{f_{A_1}(x)}{1 - e^{-x}}$, puis un équivalent de f_{A_1} en 0.

Prouver alors que $A_1 \in S$ et donner $\Phi(A_1)$.

- 1 pt:
- 1 pt:
- 1 pt:
- Dans la question suivante, $A = A_2$ désigne l'ensemble constitués des entiers qui sont la sommes des carrés de deux entiers naturels non nuls.
- On admet que A_2 appartient à S, et on désire majorer $\Phi(A_2)$.
- Soit v(n) le nombre de couple d'entiers naturels non nuls (p,q) pour lesquels $n=p^2+q^2$.
- 22. Montrer que pour tout réel x>0, la série $\sum_{n\geq 0}v(n)\mathrm{e}^{-nx}$ converge et établir :

$$\sum_{n=0}^{+\infty} v(n) e^{-nx} = (f_{A_1}(x))^2$$

Montrer alors que pour tout x > 0: $f_{A_2}(x) \leq (f_{A_1}(x))^2$. En déduire un majorant de $\Phi(A_2)$.

- 1 pt:
- 1 pt:
- 1 pt:

D. Étude de deux séries de fonctions

- Soit $(\alpha_n)_{n\geqslant 0}$ une suite de nombres réels positifs tels que pour tout réel $x\geqslant 0$, la série $\sum_{n\geqslant 0}\alpha_n\mathrm{e}^{-nx}$ converge.
- On suppose:

$$\lim_{x \to 0} \left(x \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \right) = \ell \in [0, +\infty[$$

On note F l'espace vectoriel des fonctions de [0,1] dans \mathbb{R} , E le sous-espace de F des fonctions continues par morceaux et E_0 le sous-espace de E des fonctions continues sur [0,1].

- On munit E de la norme $\|\cdot\|_{\infty}$ définie par la formule $\|\psi\|_{\infty} = \sup_{t \in [0,1]} |\psi(t)|$.
- Si $\psi \in E$, on note $L(\psi)$ l'application qui à x > 0 associe

$$(L(\psi))(x) = \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \psi(e^{-nx})$$

23. Montrer que $L(\psi)$ est bien définie pour tout $\psi \in E$ et que l'application L est une application linéaire de E dans F.

Vérifier que pour tous ψ_1 , ψ_2 dans E_1 , $\psi_1 \leqslant \psi_2$ entraı̂ne $L(\psi_1) \leqslant L(\psi_2)$.

- 1 pt : $|\alpha_n e^{-nx} \psi(e^{-nx})| \leq ||\psi||_{\infty} \alpha_n e^{-nx}$ et $\sum \alpha_n e^{-nx}$ convergente par hypothèse
- 2 pts : linéarité
- On note E_1 l'ensemble des $\psi \in E$ pour lesquels $\lim_{x\to 0} x(L(\psi))(x)$ existe et si $\psi \in E_1$, on pose :

$$\Delta(\psi) = \lim_{x \to 0} x(L(\psi))(x)$$

- 24. Vérifier que E_1 est un sous espace vectoriel de E et que l'application Δ est une forme linéaire continue de $(E_1, || \cdot ||_{\infty})$.
 - 1 pt:
 - 1 pt:
 - 1 pt:
- **25.** Montrer que pour tout $p \in \mathbb{N}$, $e_p : t \in [0,1] \mapsto t^p$ appartient à E_1 et calculer $\Delta(e_p)$. En déduire que $E_0 \subseteq E_1$ et calculer $\Delta(\psi)$ pour tout $\psi \in E_0$.
 - 1 pt:
 - 1 pt:
 - 1 pt:
- Pour tous $a, b \in [0, 1]$ tel que a < b, on note $\mathbb{1}_{[a,b]} : [0,1] \to \{0,1\}$ la fonction définie par

$$\mathbb{1}_{[a,b]}(x) = \begin{cases} 1 & si \ x \in [a,b] \\ 0 & sinon \end{cases}$$

• Soit $a \in]0,1[$ et $\varepsilon \in]0,\min(a,1-a)[$. On note :

$$g_{-}: x \mapsto \begin{cases} 1 & si \ x \in [0, a - \varepsilon] \\ \frac{a - x}{\varepsilon} & si \ x \in [a, -\varepsilon, a[\\ 0 & si \ x \in [a, 1] \end{cases}$$

et

$$g_{+}: x \mapsto \begin{cases} 1 & si \ x \in [0, a] \\ \frac{a + \varepsilon - x}{\varepsilon} & si \ x \in [a, a + \varepsilon[0, a]] \\ 0 & si \ x \in [a + \varepsilon, 1] \end{cases}$$

- **26.** a) Vérifier que g_- et g_+ appartiennent à E_0 et calculer $\Delta(g_-)$ et $\Delta(g_+)$.
 - 1 pt:
 - 1 pt:
 - 1 pt:
 - b) Montrer alors que $\mathbb{1}_{[0,a]} \in E_1$ et calculer $\Delta(\mathbb{1}_{[0,a]})$.
 - 1 pt:
 - 1 pt:
 - 1 pt:
 - c) En déduire que $E_1 = E$ et donner $\Delta(\psi)$ pour tout $\psi \in E$.
 - 1 pt:
 - 1 pt:
 - 1 pt: