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Problème 1 / 41

Soit f une fonction continue sur ]0,+∞[.

Sous réserve que cette expression ait un sens, on pose pour x ∈ R+ :

F (x) =

∫ +∞

0

tf(t)

x2 + t2
dt

L’objet de ce problème est d’étudier cette transformation et d’en déduire le calcul de certaines inté-
grales.

1. Dans cette question on considère la fonction f définie par f : t 7→ arctan(t)

t2
.

a) Montrer que F (x) est bien définie pour tout x ∈ ]0,+∞[.

• 0 pt :
t f(t)

x2 + t2
=

arctan(t)

t

1

x2 + t2

• 1 pt : pour tout x0 > 0, la fonction t 7→ t f(t)

x02 + t2
est continue sur ]0,+∞[

• 1 pt :
arctan(t)

t

1

x2 + t2
∼
t→0

t

t

1

x2
et ainsi l’intégrande est prolongeable par continuité en 0

• 1 pt :
t f(t)

x02 + t2
= O

t→+∞

(
1

t3

)
• 1 pt : théorème de domination des intégrales généralisées de fonctions continues

positives écrit correctement

b) On pose G(x) =

∫ +∞

0

arctan(xt)

t (1 + t2)
dt. Exprimer F en fonction de G.

• 1 pt : on pose u = xt (donc t =
1

x
u et dt =

1

x
du) et bornes inchangées

• 1 pt : G(x) =

∫ +∞

0

arctan(u)

1
x u

(
1 +

(
1
x u

)2) 1

x
du =

∫ +∞

0

x2 arctan(u)

u (x2 + u2)
du = x2 F (x)

c) Montrer avec précision que G est de classe C 1 sur [0,+∞[.

• 1 pt : Caractère C 1 - étude « en x »

× 1 pt : pour tout t ∈ ]0,+∞[, la fonction ht : x 7→ arctan(xt)

t (1 + t2)
est C 1 sur ]0,+∞[

× 0 pt : ht′(x) =
t

t (1 + t2)

1

1 + (xt)2
=

1

1 + t2
1

1 + (xt)2

• 3 pts : Intégrabilité - étude « en t »

× 1 pt : pour tout x ∈ ]0,+∞[, la fonction t 7→ arctan(xt)

t (1 + t2)
est intégrable sur ]0,+∞[ car

c. p. m. sur ]0,+∞[ et G(x) = x2 F (x) fournit l’intégrabilité par bonne définition
de F (x)
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× 1 pt : pour tout x ∈ ]0,+∞[, la fonction t 7→ h′t(x) est c. p. m. sur ]0,+∞[

× 1 pt :
∣∣h′t(x) ∣∣ = ∣∣∣∣ 1

1 + t2
1

1 + (xt)2

∣∣∣∣ = ∣∣∣∣ 1

1 + t2

∣∣∣∣ ∣∣∣∣ 1

1 + (xt)2

∣∣∣∣ ⩽
1

1 + t2

et φ : t 7→ 1

1 + t2
est intégrable sur ]0,+∞[

d) Calculer G′ et en déduire la valeur de F (x) pour tout x.

• 1 pt : G′(x) =

∫ +∞

0

1

1 + t2
1

1 + (xt)2
dt

• 1 pt :
1

1 + t2
1

1 + (xt)2
=

x2

x2−1

1 + (xt)2
−

1
x2−1

1 + t2
si x ̸= 1

• 1 pt : G′(x) =
x

x2 − 1

∫ +∞

0

x

1 + (xt)2
dt− 1

x2 − 1

∫ +∞

0

x

1 + t2
dt =

π

2 (x+ 1)

• 1 pt : G(x) = G(0) +

∫ x

0

π

2 (t+ 1)
dt =

π

2
ln(x+ 1)

• 0 pt : F (x) =
G(x)

x2

e) Montrer que la fonction t 7→
(
arctan(t)

t

)2

est intégrable sur [0,+∞[ et utiliser ce qui précède

pour déterminer la valeur de l’intégrale :∫ +∞

0

(
arctan(t)

t

)2

dt

• 0 pt : la fonction t 7→
(
arctan(t)

t

)2

est continue sur ]0,+∞[

• 1 pt : on la prolonge par continuité en 0 puisque
(
arctan(t)

t

)2

∼
t→0

1

• 1 pt :
(
arctan(t)

t

)2

= O
t→+∞

(
1

t2

)

• 1 pt :
∫ +∞

0

(
arctan(t)

t

)2

dt = −

[ (
arctan(t)

)2
t

]+∞

0

+2

∫ +∞

0

arctan(t)

t (1 + t2)
dt et validité

car le crochet est convergent

• 1 pt :
∫ +∞

0

(
arctan(t)

t

)2

dt = 2

∫ +∞

0

arctan(t)

t (1 + t2)
dt = 2F (1) = π ln(2)

2. Dans cette question on considère la fonction f : t 7→ cos(t)

t
.

a) Montrer que F (x) est bien définie pour tout x ∈ ]0,+∞[.

• 0 pt :
t f(t)

x2 + t2
= cos(t)

1

x2 + t2

• 1 pt : pour tout x0 > 0, la fonction t 7→ t f(t)

x02 + t2
est continue sur [0,+∞[

• 1 pt : cos(t)
1

x2 + t2
= O

t→+∞

(
1

t2

)
• 1 pt : théorème de domination des intégrales généralisées de fonctions continues

positives écrit correctement
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b) On considère H la fonction définie par H : x 7→ xF (x).

Montrer que la fonction H est bornée sur R+ et : lim
x→0

H(x) =
π

2
.

(on pourra penser au changement de variable t = ux)

• 0 pt : on pose t = ux ou plutôt u =
1

x
t (donc dt = x du) et bornes inchangées

• 1 pt : F (x) =

∫ +∞

0

cos(ux)

x2 + (ux)2
xdu =

1

x

∫ +∞

0

cos(ux)

1 + u2
du et H(x) =

∫ +∞

0

cos(ux)

1 + u2
du

• 1 pt : Existence d’une limite finie - étude « en x »

lim
x→0

cos(ux)

1 + u2
=

cos(0)

1 + u2
=

1

1 + u2

• 2 pts : Intégrabilité (par domination) - étude « en u »

× 1 pt : ℓ : u 7→ 1

1 + u2
/ u 7→ cos(ux)

1 + u2
c.p.m. sur [0,+∞[ (au moins une)

× 1 pt :
∣∣∣∣ cos(ux)1 + u2

∣∣∣∣ =
∣∣ cos(ux) ∣∣
1 + u2

⩽
1

1 + u2
et φ : t 7→ 1

1 + t2
est intégrable sur [0,+∞[

• 0 pt : ainsi par TCD lim
x→+∞

H(x) =

∫ +∞

0

1

1 + u2
du =

π

2

• 1 pt : par ailleurs :
∣∣H(x)

∣∣ ⩽ ∫ +∞

0

∣∣∣∣ cos(ux)1 + u2

∣∣∣∣ ⩽ ∫ +∞

0

1

1 + u2
du =

π

2

c) Démontrer que F est de classe C 2 sur ]0,+∞[.

• 2 pts : Caractère C 2 - étude « en x »

× 1 pt : pour tout t0 ∈ [0,+∞[, f
t0
: x 7→ cos(t0)

(
x2 + t0

2
)−1 est C 2 sur ]0,+∞[.

× 1 pt : f
t0
′(x) = − cos(t0)

(
x2 + t0

2
)−2 × 2x

et f
t0
′′(x) = (−2) cos(t0)

(
x2 + t0

2
)−3 ×

(
− 3x2 + t0

2
)

• 4 pts : Intégrabilité (par domination) - étude « en t »

× 1 pt : pour tout x ∈ ]0,+∞[, t 7→ cos(t)

x2 + t2
est intégrable sur [0,+∞[ (déjà montré)

× 1 pt : pour tout x ∈ ]0,+∞[, t 7→ −2x cos(t)(
x2 + t2

)2 est intégrable sur [0,+∞[ car c.p.m.

sur [0,+∞[ et

∣∣∣∣∣ −2x cos(t)(
x2 + t2

)2
∣∣∣∣∣ = 2

x | cos(t) |(
x2 + t2

)2 = O
t→+∞

(
1

t4

)
× 2 pts : si x ∈ [a, b] ⊂ ]0,+∞[ et t ∈ [0,+∞[ :∣∣∣∣∣−2(−3x2 + t2) cos(t)(

x2 + t2
)3

∣∣∣∣∣ = 2 | cos(t)| | − 3x2 + t2|(
x2 + t2

)3 ⩽ 2
3x2 + t2(
x2 + t2

)3 ⩽ 2
3x2 + 3t2(
x2 + t2

)3 =
6(

x2 + t2
)2

et t 7→ 6(
a2 + t2

)2 intégrable sur [0,+∞[

• 0 pt : F ′′(x) = −2

∫ +∞

0

cos(t)×
(
− 3x2 + t2

)(
x2 + t2

)3 dt
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d) On note h : (x, t) 7→ x

x2 + t2
. En admettant :

∂2h

∂t2
(x, t) +

∂2h

∂x2
(x, t) = 0. Établir que H est

solution d’une équation différentielle linéaire du second ordre à coefficients constants.

• 1 pt : en notant ht : x 7→ h(x, t) cos(t), on obtient (H de classe C 2 puisque F l’est) :

H ′(x) = F (x) + xF ′(x) =

∫ +∞

0
f
t
(x) dt+ x

∫ +∞

0
f ′
t
(x) dt =

∫ +∞

0
h′t(x) cos(t) dt

En procédant de même : H ′′(x) =

∫ +∞

0
h′′t (x) cos(t) dt

• 1 pt : en notant hx : t 7→ h(x, t) cos(t), d’après l’énoncé :

H ′′(x) = −
∫ +∞

0
h′′x(t) cos(t) dt

• 1 pt :
∫ +∞

0
h′′x(t) cos(t) dt =

[
h′x(t) cos(t)

]+∞

0
+

∫ +∞

0
h′x(t) sin(t) dt

• 1 pt :
∫ +∞

0
h′x(t) sin(t) dt = [ hx(t) sin(t) ]

+∞

0
−
∫ +∞

0
hx(t) cos(t) dt

• 1 pt :
∫ +∞

0
h′′x(t) cos(t) dt =

[
−h′x(t) cos(t)− hx(t) sin(t)

]+∞

0
+

∫ +∞

0
hx(t) cos(t) dt = H(x)

e) En déduire l’expression de F .

• 1 pt : H ′′ = H, ainsi il existe (α, β) ∈ R× R, H : x 7→ α ex + β e−x

• 1 pt : comme H est bornée, alors α = 0

• 1 pt : comme lim
x→0

H(x) =
π

2
, β =

π

2
et F : x 7→ π

2x
e−x

Exercice 1 / 10

Soit a ∈ R et la matrice Ma =

1 a 0
0 0 1
0 1 0

.

3. Pour quelles valeurs du réel a la matrice Ma est-elle diagonalisable ?

(on commencera par déterminer χMa)

• 1 pt : χMa(X) = (X − 1) (X2 − 1) = (X − 1)2 (X + 1) donc Sp(Ma) = {−1, 1}
• 1 pt : 1 ⩽ dim

(
E−1(Ma)

)
⩽ m−1(Ma) = 1 donc dim

(
E−1(Ma)

)
= 1

• 1 pt : comme χMa scindé, Ma est diagonalisable ssi dim
(
E1(Ma)

)
= dim

(
M3,1(R)

)
−1 = 2

• 1 pt : si a = 0, rg(M0 − I3) = 1 et donc dim
(
E1(Ma)

)
= 2

sinon rg(Ma − I3) = 2 et donc dim
(
E1(Ma)

)
= 1

4. Pour quelles valeurs du réel a la matrice Ma est-elle inversible ?

• 1 pt : 0 n’est pas valeur propre de Ma donc Ma est inversible pour tout a ∈ R

5. Montrer que lorsqu’elle n’est pas diagonalisable, Ma est semblable à la matrice

−1 0 0
0 1 1
0 0 1

.

• 0 pt : on note φa : X 7→ MaX l’application linéaire canoniquement associée à Ma

• 1 pt : on raisonne par analyse-synthèse : on cherche une base B = (U, V,W ) de M3,1(R)
telle que U ∈ E−1(φa), V ∈ E1(φa) et W tel que φa(W ) = V +W

• 3 pts : E−1(φa) = Vect

 a
−2
2


 et E1(φa) = Vect

1
0
0


 et W =

0
1
1


• 1 pt : la famille (U, V,W ) est bien une base
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Exercice 2 / 11

Soient x un réel positif ou nul et φx la fonction qui à un réel t ∈ R+ associe φx(t) =
e−t

1 + xt
.

On pose alors, pour tout x ⩾ 0, f(x) =

∫ +∞

0
φx(t) dt.

6. Justifier que la fonction f est bien définie sur R+.

• 1 pt : pour tout x ⩾ 0, la fonction φx est continue sur [0,+∞[

• 1 pt :
e−t

1 + xt
= O

t→+∞

(
e−t

)
+ théorème de domination

7. Déterminer le sens de variation de la fonction f sur R+.

On pourra comparer f(x) et f(y) pour deux éléments x et y de R+ tels que x < y.

• 1 pt : si x < y,
1

1 + xt
>

1

1 + yt
et donc φx(t) > φy(t)

• 1 pt : par croissance de l’intégrale (+∞ > 0), f(x) > f(y) et la fonction f est strictement
décroissante sur [0,+∞[

8. Limite de f en l’infini

a) Démontrer que la suite
(
f(n)

)
n∈N converge vers une limite ℓ.

• 1 pt : la suite numérique (f(n)) est décroissante (q. précédente) et minorée par 0

puisque
1

1 + n t
⩾ 0 et croissance de l’intégrale

• 0 pt : ainsi, (f(n)) converge vers une limite ℓ ⩾ 0.

b) Déterminer la valeur de ℓ.

• 1 pt : Existence d’une limite finie - étude « en n »

la suite de fonctions (φn) CS sur [0,+∞[ vers h : t 7→

{
1 si t = 0

0 si t > 0
c.p.m. sur [0,+∞[

• 2 pts : Intégrabilité (par domination) - étude « en t »

× 1 pt : pour tout t ⩾ 0 et tout n ∈ N∣∣φn(t)
∣∣ = ∣∣e−t

∣∣
|1 + nt|

=
e−t

1 + nt
⩽ e−t

× 1 pt : la fonction t 7→ e−t est intégrable

× 0 pt : ainsi lim
n→+∞

∫ +∞

0
φn(t) dt =

∫ +∞

0

(
lim

n→+∞
φn(t)

)
dt =

∫ +∞

0
0 dt = 0

c) En déduire lim
x→+∞

f(x).

• 1 pt : la fonction f est décroissante et minorée sur [0,+∞[. Elle admet donc une
limite finie en +∞

• 1 pt : par unicité de la limite lim
x→+∞

f(x) = lim
n→+∞

f(n) = 0
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Exercice 3 / 20

9. Justifier que la série
∑
n⩾1

(−1)n+1

n
converge.

• 0 pt : la série
∑
n⩾1

(−1)n+1

n
est alternée

• 1 pt : la suite
(
1

n

)
est décroissante

• 1 pt : la suite
(
1

n

)
converge vers 0

Ainsi, par CSA, la série est convergente

10. a) Démontrer que l’on a :
+∞∑
n=0

(∫ 1

0
x2n(1− x) dx

)
=

∫ 1

0

dx

1 + x
.

On pourra utiliser un théorème d’intégration terme à terme.
On note fn : x 7→ (1− x) x2n

• 2 pts : Existence d’une limite finie - étude « en n »

▶ pour tout x ∈ [0, 1[, la série numérique
∑

fn(x0) ACV car c’est une série géomé-
trique de raison x0

2 ∈ ]− 1, 1[ donc la série
∑

fn CS sur [0, 1[

▶ la fonction S : x 7→
+∞∑
n=0

(1− x) x2n = (1− x)
1

1− x2
=

1

1 + x
est c.p.m sur [0, 1[

• 1 pt : Intégrabilité - étude « en t »

pour tout k ∈ N, fk est intégrable sur [0, 1[ comme fonction continue sur le segment [0, 1]

• 1 pt : Hypothèse spécifique

la série
∑ ∫ 1

0
|fk(t)| dt est convergente. En effet :

∫ 1

0
|fk(t)| dt =

∫ 1

0
x2n dt−

∫ 1

0
x2n+1 dt =

1

2n+ 1
− 1

2n+ 2
=

1

(2n+ 1)(2n+ 2)
= O

n→+∞

(
1

n2

)

• 0 pt : finalement :
+∞∑
n=0

(∫ 1

0
x2n(1− x) dx

)
=

∫ 1

0

+∞∑
n=0

(
x2n(1− x)

)
dx =

∫ 1

0

dx

1 + x

b) En déduire la valeur de :
+∞∑
n=1

(−1)n+1

n
.

• 1 pt :
N∑

n=1

(−1)n+1

n
=

N∑
n=1

n pair

(−1)n+1

n
+

N∑
n=1

n impair

(−1)n+1

n
=

⌊N
2
⌋∑

j=1

(−1)2j+1

2j
+

⌊N
2
⌋−1∑

j=0

(−1)2j+2

2j + 1

• 1 pt : =
⌊N

2
⌋−1∑

j=0

1

2j + 1
−

⌊N
2
⌋∑

j=1

1

2j
=

⌊N
2
⌋−1∑

j=0

1

2j + 1
−

⌊N
2
⌋−1∑

j=0

1

2j + 2
=

⌊N
2
⌋−1∑

j=0

(
1

2j + 1
− 1

2j + 2

)

• 1 pt :
⌊N

2
⌋−1∑

j=0

(∫ 1

0
x2n(1− x) dx

)
−→

n→+∞

+∞∑
j=0

(∫ 1

0
x2n(1− x) dx

)
=

∫ 1

0

dx

1 + x
= ln(2)
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11. Déterminer l’ensemble de définition de la fonction φ : x 7→
+∞∑
n=1

(−1)n+1x
n

n
.

• 1 pt : si x0 ∈ ]− 1, 1[,
∣∣∣∣ (−1)n+1x0

n

n

∣∣∣∣ = |x0|n

n
= O

n→+∞

( ∣∣x0∣∣n )
La série num.

∑
(−1)n+1x0

n

n
est donc ACV par théorème de domination des SATP

• 1 pt : si x0 = 1, la série
∑

(−1)n+1 1

n
CV par CSA

• 1 pt : si x0 = −1, la série
∑

(−1)n+1 (−1)n

n
DV (série harmonique)

• 1 pt : si x0 > 1,
∣∣∣∣ (−1)n+1x0

n

n

∣∣∣∣ = |x0|n

n
−→

n→+∞
+∞ et la série GDV

• 1 pt : si x0 < −1,
∣∣∣∣ (−1)n+1x0

n

n

∣∣∣∣ = |x0|n

n
−→

n→+∞
+∞ et la série GDV

On en conclut que φ est définie sur ]− 1, 1]

12. Calculer φ(1).

• 1 pt : φ(1) = ln(2) (cf question 10b)

13. a) Calculer l’intégrale :
∫ 1

0

1− x

1 + x2
dx.

• 1 pt :
∫ 1

0

1− x

1 + x2
dx =

∫ 1

0

1

1 + x2
dx−1

2

∫ 1

0

2x

1 + x2
dx = [ arctan(x) ]

1

0
−1

2

[
ln(1 + x2)

]1
0

• 1 pt : =
(
arctan(1)− arctan(0)

)
− 1

2

(
ln(2)− ln(1)

)
=

π

4
− 1

2
ln(2)

b) En calculant de deux façons différentes
+∞∑
n=0

(−1)n
(∫ 1

0
x2n(1− x) dx

)
, déterminer la valeur

de la somme : S =
+∞∑
n=0

(−1)n

(2n+ 1)(2n+ 2)
, après en avoir justifié l’existence.

• 0 pt : (−1)n
∫ 1

0
x2n (1− x) dx =

∫ 1

0

(
− x2

)n
(1− x) dx

• 1 pt : par théorème d’intégration terme à terme (même argument qu’en 10a)
+∞∑
n=0

(−1)n
(∫ 1

0
x2n(1− x) dx

)
=

∫ 1

0

(
+∞∑
n=0

(
− x2

)n
(1− x)

)
dx =

∫ 1

0

1− x

1−
(
− x2

) dx

• 1 pt :
+∞∑
n=0

(−1)n
(∫ 1

0
x2n(1− x) dx

)
=

+∞∑
n=0

(−1)n
(

1

2n+ 1
− 1

2n+ 2

)
=

+∞∑
n=0

(−1)n
1

(2n+ 1)(2n+ 2)

• 1 pt : S =
π

4
− 1

2
ln(2) d’après la question précédente

Problème 2 / 28

Soit n un entier supérieur ou égal à 3.

On note En = Rn muni de sa structure euclidienne canonique et B = (e1, . . . , en) sa base canonique.

On considère les endomorphismes f et g de En définis par :(
f(e1) =

n∑
i=1

ei et ∀j ∈ J2, nK, f(ej) = e1 + ej

)
et (g = f − idEn)

7
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14. Donner, dans la base B, F et G les matrices respectives des endomorphismes f et g.

• 2 pts : F =



1 1 . . . . . . 1

1 1 0 . . . 0
... 0 1

. . .
...

...
...

. . . . . . 0
1 0 . . . 0 1

 et G =



0 1 . . . . . . 1

1 0 0 . . . 0
... 0 0

. . .
...

...
...

. . . . . . 0
1 0 . . . 0 0


15. Justifier que f et g sont diagonalisables.

• 1 pt : les matrices MatB(f) et MatB(g) sont symétriques réelles donc diagonalisables.
Ainsi, f et g le sont

16. Diagonalisation de f et de g dans une même base
a) Déterminer une base B1 de Im(g), le rang de g et une base B2 de Ker(g).

• 1 pt : Im(g) = Vect (g(e1), . . . , g(en)) = Vect (e2 + . . .+ en, e1, . . . , e1) = Vect (e2 + . . .+ en, e1)

• 1 pt : rg(g) = dim
(
Vect (e2 + . . .+ en, e1)

)
= 2

• 2 pts : (e3 − e2, . . . , en − e2) est une famille libre de Ker(g) et de bon cardinal (par
théorème du rang). C’est donc une base de Ker(g)

b) Montrer que Im(g) et Ker(g) sont supplémentaires orthogonaux dans En.

• 1 pt : ∀j ∈ J3, nK, ⟨ej − e2, e1⟩ = ⟨ej , e1⟩ − ⟨e2, e1⟩ = 0− 0 = 0

• 1 pt : ∀j ∈ J3, nK, ⟨ej−e2, e2+. . .+en⟩ =
n∑

i=2
⟨ej , ei⟩−

n∑
i=2

⟨e2, ei⟩ = ⟨ej , ej⟩−⟨e2, e2⟩ = 1−1 = 0

• 1 pt : ainsi, les sev Im(g) et Ker(g) sont orhtogonaux donc en somme directe
• 1 pt : enfin, dim

(
Im(g)

)
+ dim

(
Ker(g)

)
= 2 + n− 2 = n = dim(En)

c) Démontrer que le spectre de l’endomorphisme g est : Sp(g) = {0, λ1, λ2} où les deux réels λ1 et
λ2 sont non nuls et vérifient la relation λ1 + λ2 = 0. On choisira λ1 > 0.

• 1 pt : comme dim
(
Ker(g)

)
= n−2 > 0 alors 0 est valeur propre de g (de sep de dim n− 2)

• 1 pt : comme g est diagonalisable, dim(En) = dim(E0(g)) +
∑

λ∈Sp(g)
λ̸=0

dim
(
Eλ(g)

)
donc

∑
λ∈Sp(g)
λ ̸=0

dim
(
Eλ(g)

)
= n− (n− 2) = 2 et il y a donc au maximum 2 autres val. propres

• 1 pt : si on note λ1 et λ2 les deux valeurs propres non nulles (éventuellement
égales) alors, comme g est diagonalisable tr(g) = m0(g)× 0 +mλ1(g) λ1 +mλ2(g) λ2

• 1 pt : on démontre (par l’absurde) que λ1 ̸= λ2. Si λ1 = λ2 alors l’égalité précédente
démontre λ1 = 0 = λ2

d) On se propose de déterminer λ1 et λ2 par deux méthodes :
Méthode 1
(i) Démontrer que Im(g) et Ker(g) sont stables par g.

• 1 pt : pour tout y ∈ Im(g), g(y) ∈ Im(g) donc Im(g) est stable par g

• 1 pt : pour tout x ∈ Ker(g), g(x) ∈ Ker(g) puisque g
(
g(x)

)
= g(0En) = 0En

(ii) Déterminer la matrice H dans la base B1 de l’endomorphisme h de Im(g) induit par g.

• 1 pt : en notant e′1 = e1 et e′2 = e2 + . . .+ en alors g(e′1) = e2 + . . .+ en = e′2

• 1 pt : g(e′2) = g(e2 + . . .+ en) =
n∑

k=2

g(ek) = (n− 1) · e1 = (n− 1) · e′1

• 0 pt : MatB1(h) = H =

(
0 n− 1
1 0

)
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(iii) Déterminer les valeurs propres et sous-espaces propres associés de h.

• 1 pt : χh(X) =

∣∣∣∣X −(n− 1)
−1 X

∣∣∣∣ = X2 − (n− 1) =
(
X −

√
n− 1

) (
X +

√
n− 1

)
(ou formule χh(X) = X2 − tr(h) X + det(h))

• 1 pt : E√
n−1(h) = Vect

(√
n− 1 e′1 + e′2

)
• 1 pt : E−

√
n−1(h) = Vect

(
−
√
n− 1 e′1 + e′2

)
(iv) En déduire, en le justifiant soigneusement, les valeurs de λ1 et λ2.

• 1 pt : on note B′ = (B1,B2) base obtenue par concaténation des bases B1 et B2

on obtient : MatB′(g) =

(
H 0
0 0

)
• 1 pt : χg(X) = Xn−2 × χh(X) or : χg(X) = Xn−2 × (X − λ1) (X − λ2)

d’où λ1 =
√
n− 1 et λ2 = −

√
n− 1

Méthode 2
(i) Montrer que le spectre de g2 = g ◦ g est : Sp

(
g2
)
= {0, λ1

2, λ2
2}.

• 1 pt : dans une base de diagonalisation B′ de g,

MatB′(g2) =
(
MatB′(g)

)2
=


0 0 . . . . . . 0

0
. . . . . .

...
...

. . . 0
. . .

...
0 . . . 0 λ1

2 0
0 . . . . . . 0 λ2

2

 donc Sp(g2) = {0, λ1
2, λ2

2}

(ii) Déterminer la matrice de l’endomorphisme g2 dans la base B.

• 1 pt : MatB(g2) =
(
MatB(g)

)2
=


n− 1 0 . . . . . . 0
0 1 . . . . . . 1
...

...
. . .

...
...

...
. . .

...
0 1 . . . . . . 1


(iii) En déduire, en fonction de n, la valeur de λ1

2 + λ2
2.

• 1 pt : tr
(
MatB′(g2)

)
= λ1

2 + λ2
2 = (n− 1) + 1 + . . .+ 1 = tr

(
MatB(g2)

)
(iv) Retrouver alors les valeurs de λ1 et λ2 obtenues par la méthode 1.

• 1 pt : λ1
2 + (−λ1)

2 = 2(n− 1) donc λ1
2 = n− 1 et λ1 =

√
n− 1

e) Déterminer une matrice P ∈ GLn(R) sous la forme P =


∗ · · · ∗ ∗
1 ∗ · · · ∗
...
1 ∗ · · · ∗


telle que P−1GP = diag(λ1, λ2, 0, · · · , 0). On ne demande pas de déterminer P−1.

• 1 pt :

f) Justifier que la matrice P−1FP est diagonale.

• 1 pt :

17. Résoudre pour t réel, le système différentiel : X ′(t) = FX(t) + t U où U est la première colonne de
la matrice P .

• 1 pt :
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