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DS3 / 110

Probléme 1 / 41

Soit f une fonction continue sur |0, +ool.

Sous réserve que cette expression ait un sens, on pose pour z € R :

+o0
F(z) = /0 ) g

22 + 12
L’objet de ce probléme est d’étudier cette transformation et d’en déduire le calcul de certaines inté-
grales.

arctan(t)

1. Dans cette question on considére la fonction f définie par f : ¢ +— 2

a) Montrer que F'(z) est bien définie pour tout = € |0, +o0.
tf(t)  arctan(t) 1

oOpti

e x? 412
, . t f(t) :
« 1 pt : pour tout x > 0, la fonction t = — P est continue sur |0, +00]
Lo
tan(t 1 t 1
e 1pt: arctan(t) ~ - — et ainsi ’intégrande est prolongeable par continuité en 0
t 22 +12 1m0 t 22

tf(t) 1
cipt: 2 = o (=
P e+ 2 H+oo<t3)

e« 1 pt : théoréme de domination des intégrales généralisées de fonctions continues
positives écrit correctement

arctan(zt)
t (1412

1 1
« 1 pt : on pose (donc t = —u et dt = —du) et bornes inchangées
T T

.1pt:G<x>=/+°° arctan(u) 1, :/“’ @ arctan(u)
0 %u <1+(%u)2>1" 0 u (22 + u?)

¢) Montrer avec précision que G est de classe 4! sur [0, +o0|.

+oo
b) On pose G(z) = / dt. Exprimer F' en fonction de G.
0

du = 2% F(x)

e 1pt: Caractére ¢ - étude « en z »

arctan(zt)

x 1 pt : pour tout ¢ € ]0, 400}, la fonction h; : z — Tt

est € sur ]0, +oo]

t 1 1 1

XO t:h, == =
pt : by () t(14+12) 1+ ()2 1+12 1+ (xt)?

e 3 pts: Intégrabilité - étude «en t »

t t
x 1 pt : pour tout z € ]0, +o0], la fonction ¢t — W est intégrable sur |0, +-00[ car
c. p. m. sur |0, +ocf et G(x) = 22 F(x) fournit ’intégrabilité par bonne définition

de F(x)
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x 1 pt : pour tout z € ]0,+o0], la fonction ¢ — h}(z) est c. p. m. sur |0, +oo|

bt ¢ |H(e) | = 1 1 1 1
L e R iy s V2 R [ R i gy oy P [ >
et p:t— —— e est intégrable sur |0, +o0]

d) Calculer G’ et en déduire la valeur de F(x) pour tout .

1t-G’(:p)—/+oo ! L
toPhe )y 14 11 (at)?

x? 1

1 1 21 LS U
= — 1T
1+t 14 (xt)2 14 (xt)? 142
X

oo x 1 too g T
e 1pt:G(z)= dt — S TS —
pt : G(x) 3:2—1/0 1+ (xt)2 x2—1/0 1112 2(x + 1)

e« 1pt:

. 1pt:G(:c)z§«€@’)’+/j ﬁdt:% In(z+1)
.Opt:F(a:):Gagj)
arctan(t) ) 2

e) Montrer que la fonction ¢ — est intégrable sur [0, +oo[ et utiliser ce qui précéde

pour déterminer la valeur de 'intégrale :

[

2
tan(t
« 0 pt : la fonction ¢t — <arc?n()> est continue sur |0, 4o00|

e . arctan(t) ) 2
o 1 pt : on la prolonge par continuité en 0 puisque — ~ 1
t—0

arctan(t) ) 2 1

elpt:|————| = O |
—+oo

oo tan(t)\ 2 arctan(t))’ oo arct
.1pt:/ M dt = — ﬂ —|—2/ Mdtetvahdlte

0 t t 0 t(1+t2)

car le crochet est convergent

. [T [arctan(t) 2 B oo arctan(t) .
-lpt./O (t ) dt—Q/O a2 dt =2F(1) = m In(2)
t

cos( )

2. Dans cette question on considére la fonction f : ¢t +—

t
a) Montrer que F'(x) est bien définie pour tout = € ]0, +o0.
tf(t) 1
« 0 pt . $2+t2 :COS(t) m
_ , t f(t) :
e 1 pt : pour tout xy > 0, la fonction t — P o est continue sur [0, +00]
Zo

1 1
« 1 pt : cos(t) o :t—groo<t2>

e 1 pt : théoréme de domination des intégrales généralisées de fonctions continues
positives écrit correctement
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b) On considére H la fonction définie par H : = — xF(z).
Montrer que la fonction H est bornée sur Ry et : lir% H(z) = g
T—

(on pourra penser au changement de variable t = ux)

1
e« Opt:onpose| t=ux |ouplutét| uw=—1t |(donc dt =z du) et bornes inchangées
x
+00 1 +o0 +o0
e« 1 pt: F(x) :/ M xdu = — / COS(U? du et H(x) :/ cos(uz) du
0 z? + (ux) r Jo 1+u 0 14 u?
« 1 pt : | Existence d’une limite finie - étude « en z »
cos(ux)  cos(0) 1
1 = =
e—0 1+u2  1+u?2 1+ u?
e 2 pts : | Intégrabilité (par domination) - étude « en u »
Lpt:lium )y C50) 0, +o0| (au moi )
: 0w U c.p.m. sur oo| (au moins une
P 1+ 2 1+uz P ’

cos(ux) ‘ cos(ux)‘ ' 1 .
x 1 pt: T T 1 S Ty et p:t— e est intégrable sur [0, +oo]
+oo 1 T
e 0 pt : ainsi TCD 1 H(x) = — du= <
pt : ainsi par Jm (x) /0 T2 =73

cos(ux)
1+ u?

“+oo
1 pt : par ailleurs : ‘H(z) ‘ < /
0

+oo 1 T
S/ du = —
0 1+U2 2

¢) Démontrer que F est de classe 2 sur 0, +o0l.

e 2 pts: Caractére %2 - étude « en z »

« 1 pt : pour tout ty € [0, +oo|, LO

x 1pt: f, '(z) = —cos(to) (2 +102) % x 2
et Lou(ﬂc) = (—2) cos(to) (x2 + t02)_3 X (— 322 + t02)

t x> cos(to) (22 + to? )71 est €2 sur ]0, +ool.

« 4 pts : | Intégrabilité (par domination) - étude « en t »
cos(t) . .
x 1 pt : pour tout x € |0, +o0[, t = —; P est intégrable sur [0, +00| (déja montré)
x
—2x cos(t) ..
x 1 pt : pour tout z € |0, +oo[, t — m est intégrable sur [0, +oo] car c.p.m.
e+t
—2 (¢ S(t 1
sur [0, oo et | 228 | _ o zles] <4>
(a:2+t2) (x2+t2) t—+oo \ T

x 2 pts :six€la,b] CJ0,+oo] et te[0,+o00]:
—2(=3z% + 1) cos(t) | — 322 + 2| <o 322 + 12 - 322 + 3t2 6

= 2| cos(t)]

) @re) T @ee) @) @)’
et t — ( 5 2)2 intégrable sur [0, +00]
a®+t
e 0pt: F'(z) =2 / > cos(t) x ( 3x3 +12) »
0 (22 +12)
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0%h 0%h

d) On note h : (x,t) — ﬁ En admettant : w(a:,t) + @(az,t) = 0. Etablir que H est

solution d’une équation différentielle linéaire du second ordre & coeflicients constants.
« 1 pt : en notant h, : z + h(z,t) cos(t), on obtient (H de classe €2 puisque F ’est) :
“+oo “+o0o +oo
H'(z)=F(z)+zF'(z) = / f(z) dt+x / ﬂ/(az) dt = / hj(z) cos(t) dt
0 teo O 0
En procédant de méme : H"(z) :/ Ry (x) cos(t) dt
0
« 1 pt : en notant h, : t — h(x,t) cos(t), d’aprés ’énoncé :

+o0o
HY(2) = — /0 (1) cos(t) dt
“+o0o too +o0o
e 1pt: /0 R(t) cos(t) dt = [ R, (t) cos(t) ]O +/0 hl(t) sin(t) dt
+00 +oo
e 1pt: /O b (t) sin(t) dt = [ h,(t) sin(t) ]{f"" — /O h,(t) cos(t) dt

+oo +oo
. 1pt :/ Wi (t) cos(t) dt = [ —hi(t)c F(t)sin(t) ]0 +/ h,(t)cos(t) dt = H(z)
0 0
e) En déduire I'expression de F.

e« 1 pt: H' = H, ainsi il existe (o,) ERxR, H:z—~a e+ e *

e 1 pt : comme H est bornée, alors o =0
™

« 1 pt : comme lim H(a:)zz,ﬁ:—etF::z:r—>le_"j
z—0 2
Exercice 1 / 10

Soit a € R et la matrice M, = (O

2 2x
0
1].
0 0

3. Pour quelles valeurs du réel a la matrice M, est-elle diagonalisable ?

—
—= O Q

(on commencera par déterminer Xz, )
e 1 pt:xa,(X)=(X—-1)(X?-1)=(X—-1)2(X +1) donc Sp(M,) = {-1,1}
« 1 pt:1<dim(E_1(M,)) <m_1(M,) =1 donc dim (E_(M,)) =1
« 1 pt : comme ), scindé, M, est diagonalisable ssi dim (E;(M,)) = dim (#31(R)) —1 =2
e 1 pt:sia=0,rg(My—1I3) =1 et donc dim (E;(M,)) =2
sinon rg(M, — I3) = 2 et donc dim (E;(M,)) =1

4. Pour quelles valeurs du réel a la matrice M, est-elle inversible 7

e« 1 pt : 0 n’est pas valeur propre de M, donc M, est inversible pour tout a € R
-1 0 0

5. Montrer que lorsqu’elle n’est pas diagonalisable, M, est semblable a la matrice ( 0 1 1) .
0 0 1

« 0 pt : on note ¢, : X — M, X Papplication linéaire canoniquement associée a M,

« 1 pt : on raisonne par analyse-synthése : on cherche une base % = (U,V,W) de .#5(R)
telle que U € E_1(p,), V € E1(pa) et W tel que ¢, (W) =V + W

a 1 0
3 pts : E_1(p,) = Vect (—2) et Fi(p,) = Vect (0) et W= (1)
2 0 1

« 1 pt : la famille (U,V,W) est bien une base
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Exercice 2 / 11

Soient x un réel positif ou nul et ¢, la fonction qui a un réel ¢ € Ry associe ¢, (t) =

e—t

1+ at

—+00
On pose alors, pour tout = > 0, f(x) = / v (t) dt.
0

6.

Justifier que la fonction f est bien définie sur R..

« 1 pt : pour tout = > 0, la fonction ¢, est continue sur [0, +o0]

e—t

o1 t = O
P ].+.’L’t t—+o0

(e*t) + théoréme de domination

Déterminer le sens de variation de la fonction f sur R..

On pourra comparer f(x) et f(y) pour deux éléments x et y de R, tels que z < y.
1 S 1

14+at 14yt

« 1 pt : par croissance de I’intégrale (+oc > 0), f(z) > f(y) et la fonction f est strictement
décroissante sur [0, +0o0]

e 1 pt:sixz<y, et donc ¢, (t) > ¢, (t)

Limite de f en l’infini

a) Démontrer que la suite (f(n)) converge vers une limite /.

neN

« 1 pt : la suite numeérique (f(n)) est décroissante (q. précédente) et minorée par 0

puisque > 0 et croissance de ’intégrale

1+nt
« 0 pt : ainsi, (f(n)) converge vers une limite ¢ > 0.

b) Déterminer la valeur de /.

« 1 pt : | Existence d’une limite finie - étude « en n »
1 sit=0
la suite de fonctions (¢,) CS sur [0,+o00| vers h : ¢ — c.p.m. sur [0,4o0|
0 s1t>0
e 2 pts : | Intégrabilité (par domination) - étude « en ¢ »

x 1 pt : pour tout t > 0 et tout n € N

—t —t
oult)| = S e
[1+nt] 1+nt

x 1 pt : la fonction t — e~ ! est intégrable

+oo +o0 +oo
x 0 pt : ainsi lim on(t) dt :/ ( lim Lpn(t)> dt :/ 0dt=0
0 0 0

n—-+00 n—+00

t

< e’

c¢) En déduire xgg-loo f(x).

« 1 pt : la fonction f est décroissante et minorée sur [0, +oo[. Elle admet donc une
limite finie en 400

« 1 pt : par unicité de la limite lim f(z)= lim f(n)=0
T—>+00 n—-+o0o
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Exercice 3 / 20

) ) -1 n+1
9. Justifier que la série (7 converge.
n=1 n

(_1)n+l

« 0 pt : la série ) est alternée

n>1 n
. 1 L
e« 1 pt : la suite | — | est décroissante
n
. 1
o 1 pt : la suite [ — ) converge vers 0
n

Ainsi, par CSA, la série est convergente

400 1 1
10. a) Démontrer que 'on a : > (/ (1 —2) dac) = /
0 0

n=0

dx
1+az
On pourra utiliser un théoréme d’intégration terme a terme.
On note f, : z+ (1 — ) 22"

e 2 pts : | Existence d’une limite finie - étude « en n »

» pour tout z € [0, 1], la série numérique ) f,(zg) ACV car c’est une série géomé-

trique de raison z¢% € | — 1, 1] donc la série > f,, CS sur [0, 1]
oo 1 1
» la fonction S :z — ngo (1—z) 2" =(1- x)m =11 est c.p.m sur [0,1]

o 1 pt :| Intégrabilité - étude «en t »

pour tout k € N, f;, est intégrable sur [0, 1] comme fonction continue sur le segment [0, 1]

« 1 pt : | Hypothése spécifique

1
la série ) / |fx(t)| dt est convergente. En effet :
0

/llf(t)ldt—/1m2”dt—/lx2"“dt— Lt ! _ o (4
0o ~ 0 T mtl 2tz @it D@n+2)  esie \n2

. 0 pt : finalement : 5 </O1 2 (1 — x) daz) :/01 5 (@21 - ) dx:/ol dx

n=0 n=0 1+
o (-1
b) En déduire la valeur de : 5 ~————
n=1 n
N (_1)nt N (_1)ntl N et L) i -1 Cqy2it2
cipt:y SV s DT s DTS EDTE (=1)
n=1 n n=1 n n=1 n ]:1 2] _]:O 2] + 1
L%J*l 1 L%J 1 L%J*l 1 L%J*l 1 L%J*l 1 1
«1lpt:= —y = - = -
P Eo 2j+1 32 = 2+l % 2+2 0 % <2]+1 2J+2)
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+oo n
11. Déterminer l'ensemble de définition de la fonction ¢ : x +— > (—1)”+1x—.
n=1 n
n n
ciptesiope] - vl [ o B0 o ()
n n n——+o0o

n
La série num. ) (—1)"“& est donc ACV par théoréme de domination des SATP
n

1
« 1 pt :sixg=1, lasérie > (—1)""1= CV par CSA
n

—1)n
o 1 pt:sixzy=—1, la série ) (—1)”“! DV (série harmonique)
n
n n
e 1 pt:sizy>1, (—1)"*1& ’ = [zl — 4 o0 et la série GDV
n n n—+oo
n n
e 1 pt:siz<—1, (—1)”“& ‘ _ Izl — + o0 et la série GDV
n n n—400

On en conclut que ¢ est définie sur | —1,1]

12. Calculer (1).
e 1 pt: p(1) =In(2) (cf question 10b)

1—=x
14 22

1 1 1
1—x 1 1 2z 11 PNEE
. 1p1::/0 22 dm:/o 1+:E2d:n2/0 22 dx = [ arctan(x) ]0—5 [ln(1+x)]0

dz.

1
13. a) Calculer l'intégrale : /
0

1 1
« 1 pt : = (arctan(l) — arctan(0)) — 3 (In(2) — Inf1)) = % ~3 In(2)
+00 1
b) En calculant de deux fagons différentes >  (—1)" < / (1 —z) dz), déterminer la valeur
=0 0
S
de la somme : S = ) , aprés en avoir justifié 'existence.

2 Cn T 1)(2n+2)

1 1
.Opt:(—l)”/0 l’Qn(l—ZE)dJT:/O (—2*)" (1—2)dx

« 1 pt : par théoréme d’intégration terme a terme (méme argument qu’en 10a)

g(—m </01 22(1 — 1) dx)-/ol <§(—x2)” (1—95)) d:):—/ol 11(_9;2)dx

1mn§§«4w(41x%u—x>m)=§?«4w( ! )= 0 G

= n+1 2m+2) = (2n +1)(2n + 2)
™

o 1 t:S:
P 4

1
5 In(2) d’apreés la question précédente

Probléme 2 / 28

Soit n un entier supérieur ou égal a 3.
On note F,, = R™ muni de sa structure euclidienne canonique et & = (eq, ..., e,) sa base canonique.

On consideére les endomorphismes f et g de E,, définis par :

-

(f(el): ei et Vjel[2n], f(ej):el+ej) et (¢g=f—idg,)

=1
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14. Donner, dans la base &, F' et G les matrices respectives des endomorphismes f et g.

11 ... .01 o1 ... ... 1
11 0 ... 0 10 0 ... 0
e2pts: F=1]: o 1 "-. leteG=1[: 0 o0 :
TR )
10 ... 0 1 10 ... 0 O

15. Justifier que f et g sont diagonalisables.

« 1 pt : les matrices Matz(f) et Maty(g) sont symétriques réelles donc diagonalisables.
Ainsi, f et g le sont

16. Diagonalisation de f et de g dans une méme base
a) Déterminer une base #; de Im(g), le rang de g et une base %y de Ker(g).
e 1 pt:Im(g) = Vect (g(e1),...,9(en)) = Vect (e + ...+ ep,e1,...,e1) = Vect (e + ...+ ey, €1)
« 1 pt:rg(g) :dim( Vect (e2 + ...+ en,€1) > =2

e 2 pts: (e3 —e3,...,e, — e3) est une famille libre de Ker(g) et de bon cardinal (par
théoréme du rang). C’est donc une base de Ker(g)

b) Montrer que Im(g) et Ker(g) sont supplémentaires orthogonaux dans E,.

« 1 pt:Vje[3,n], (e —eze1) = (ej,er) —(e2,e1) =0—-0=0

e 1pt:Vje[3,n],(ej—ezeat...Aen) =3 (ej €)= (e, €5) = (5, €5)—(e2,€2) =1-1=10

i=2 i=2
« 1 pt : ainsi, les sev Im(g) et Ker(g) sont orhtogonaux donc en somme directe
« 1 pt : enfin, dim (Im(g)) + dim (Ker(g)) =2+ n — 2 =n = dim(E,)

¢) Démontrer que le spectre de ’endomorphisme g est : Sp(g) = {0, A1, A2} o les deux réels A\; et
A9 sont non nuls et vérifient la relation Ay + Ay = 0. On choisira A\ > 0.

« 1 pt: comme dim (Ker(g)) =n—2 > 0 alors 0 est valeur propre de g (de sep de dim n — 2)
« 1 pt : comme g est diagonalisable, dim(E,) = dim(Ey(g)) + Y. dim(E\(g)) donc

AES
o
> dim(Ex(g)) =n—(n—2) =2 et il y a donc au maximum 2 autres val. propres
AE}\S;O(Q)

« 1 pt : si on note \; et Ay les deux valeurs propres non nulles (éventuellement
égales) alors, comme g est diagonalisable tr(g) = mgo(g) X 0+ mx, (g) A1 +mx,(g) Ao

« 1 pt : on démontre (par ’absurde) que \; # Ay. Si A\; = )\, alors ’égalité précédente
démontre \; = 0= X\

d) On se propose de déterminer A; et A2 par deux méthodes :
Méthode 1

(i) Démontrer que Im(g) et Ker(g) sont stables par g.
« 1 pt : pour tout y € Im(g), g(y) € Im(g) donc Im(g) est stable par g
« 1 pt : pour tout z € Ker(g), g(z) € Ker(g) puisque g(g(z)) = 9(0g,) = 0g,
(i1) Déterminer la matrice H dans la base %; de 'endomorphisme A de Im(g) induit par g.

« 1 pt:ennotant ) =e; et e, =ea+...+ ¢, alors g(e}) =e2+ ...+ e, =¢€)

. 1pt:g(e’Q):g(62+...+en):é2g(ek):(n—l)-elz(n—1)~e’1

« 0 pt : Maty, (h) = H = <(1J n81>
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17.

(iit) Déterminer les valeurs propres et sous-espaces propres associés de h.

e 1pt: yu(X) = ‘ii ‘(”X‘l)‘ — X2 (n—1)= (X—\/m) (X+\/m)
(ou formule Y, (X) = X2 — tr(h) X + det(h))
e 1pt: E —p(h) = Vect (Vn —1 €] +¢h)
e 1pt:E_,—(h) = Vect (—v/n —1¢€| +¢h)
(iv) En déduire, en le justifiant soigneusement, les valeurs de A1 et As.
« 1 pt : on note &' = (%1, %) base obtenue par concaténation des bases %; et %,

on obtient : Maty (g) = <1(L)I 8)

e 1pt:xg(X)=X""2x xp(X) or: xg(X)=X"2x (X —X) (X —\)
d'ou \i=vn—1let \g=—y/n-—-1

Méthode 2
(i) Montrer que le spectre de g2 = go g est : Sp (92) = {0, M2, X2},

« 1 pt : dans une base de diagonalisation %’ de g,

o 0 ... ... O
0 . . :
2
Mat@/(g2):(Mat%/(g)) = 0 donc Sp(gQ):{O,)\lz,)QQ}
0 ... 0 M 0
0 ... ... 0 X2

(ii) Déterminer la matrice de ’endomorphisme g2 dans la base %.

n—1 0 ... ... 0
0 1 ... ... 1
2 . . . .
« 1 pt : Maty(g?) = (Mat«,@(g)) =
0 1 ... ... 1

(i#) En déduire, en fonction de n, la valeur de A1 + A92.
e 1 pt:tr(Matg(g?) =M2+X?=(Mn—-1)+1+...+1=tr (Matg(g?))
(iv) Retrouver alors les valeurs de A\; et A2 obtenues par la méthode 1.

e 1pt: N2+ (-\)?=2(n—-1)donc M\ =n—-1let \j=+yn—1

e) Déterminer une matrice P € GL,(R) sous la forme P =
1 *x - x

telle que P~!GP = diag(\1, A2,0,---,0). On ne demande pas de déterminer P~!.
e« 1pt:

f) Justifier que la matrice P~ F P est diagonale.
e« 1 pt:

Résoudre pour ¢ réel, le systéme différentiel : X'(t) = FX(t) +tU ou U est la premiére colonne de
la matrice P.

o].pt:




