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EXERCICE 1
Étude d’un endomorphisme matriciel / 33

Partie I - Généralités

1. Montrer pour tout A ∈ Mn(C) que l’application φA est un endomorphisme de Mn(C).

• 1 pt : φA(λ1M1 + λ2M2) = A
(
λ1M1 + λ2M2

)
= λ1AM1 + λ2AM2 = λ1φA(M1) + λ2φA(M2)

• 1 pt : caractère endo φ(M2(C)) ⊂ M2(C)

2. Montrer pour tout (A,B) ∈ Mn(C)2 que φA ◦ φB = φAB.

• 1 pt : φA ◦ φB(M) = φA(φB(M)) = φA(BM) = A(BM) = (AB)M = φAB(M)

3. Soit A ∈ Mn(C). Déduire de la question précédente que φA est un isomorphisme si et seulement
si la matrice A est inversible. Indication : si φA est un isomorphisme, on pourra considérer un
antécédent par φA de la matrice identité de Mn(C).

• 1 pt : (⇒) si φA : Mn(C) → Mn(C) est un isom, on note B = φ−1
A (In). Alors φA(B) = In

donc AB = In donc A inversible d’inverse B

• 1 pt : (⇐) si A inversible, φA ◦ φA−1 = φIn = idMn(C) et donc φA est un isomorphisme

Partie II - Étude d’un exemple

Dans cette partie uniquement, on suppose que n = 2. On considère un nombre a ∈ C et la matrice :

A =

(
1 1
0 a

)
∈ M2(C)

4. Déterminer une condition nécessaire et suffisante sur le nombre a ∈ C pour que la matrice A soit
diagonalisable.

• 0 pt : χA(X) =

∣∣∣∣X − 1 −1
0 X − a

∣∣∣∣ = (X − 1)(X − a)

• 1 pt : si a ̸= 1, alors A possède exactement deux valeurs propres distinctes (à savoir
a et 1), et puisque A ∈ M2(C), A est diagonalisable

• 1 pt : si a = 1, alors A possède 1 pour unique valeur propre. Si A était diagonalisable,

alors il existerait P ∈ GL2(C) tel que A = P ×
(
1 0
0 1

)
× P−1 = PP−1 = I2.

5. Déterminer la matrice de φA dans la base C =

((
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
de M2(C).

• 1 pt : φA(

(
1 0
0 0

)
) =

(
1 0
0 0

)
et φA(

(
0 1
0 0

)
) =

(
0 1
0 0

)
• 1 pt : φA(

(
0 0
1 0

)
) =

(
1 0
a 0

)
et φA(

(
0 0
0 1

)
) =

(
0 1
0 a

)

On en déduit : MatC(φA) =


1 0 1 0
0 1 0 1
0 0 a 0
0 0 0 a


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6. En déduire les valeurs propres de φA, puis déterminer la dimension de chaque sous-espace propre
de φA en fonction de a ∈ C.

• 0 pt : Sp(φA) = {1, a} ou Sp(φA) = {a} (cas a = 1)

• 1 pt : théorème du rang dim
(
M2(C)

)
= dim

(
Im(φA − λid)

)
+ dim

(
Ker(φA − λid)

)
• 2 pts : cas a ̸= 1

× 1 pt : dim
(
Im(φA − id)

)
= rg(A− I4) = 2 donc dim

(
E1(φA)

)
= 4− 2 = 2

× 1 pt : dim
(
Im(φA − a id)

)
= rg(A− a I4) = 2 donc dim

(
Ea(φA)

)
= 4− 2 = 2

• 0 pt : cas a = 1, le même calcul donne dim
(
E1(φA)

)
= 2

7. Déterminer une condition nécessaire et suffisante sur a ∈ C pour que φA soit diagonalisable.

• 1 pt : φA diagonalisable ⇔ a ̸= 1

• 1 pt :
∑

λ∈Sp(φA)

dim
(
Eλ(φA)

)
=

{
dim

(
Ea(φA)

)
+ dim

(
E1(φA)

)
= 4 = dim

(
M2(C)

)
(si a ̸= 1)

dim
(
E1(φA)

)
= 2 ̸= dim

(
M2(C)

)
(si a = 1)

Partie III - Réduction de φA si A est diagonalisable

Dans cette partie, on considère une matrice A ∈ Mn(C). Nous allons étudier les propriétés liant les
éléments propres de la matrice A et ceux de l’endomorphisme φA.

8. Montrer : ∀k ∈ N, (φA )k = φAk .

• 2 pts : par récurrence (écrite correctement) à l’aide de la question 2

9. En déduire : ∀P ∈ C[X], P (φA) = φP (A).

• 1 pt : soit P ∈ C[X]. Alors, il existe d ∈ N et (a0, . . . , ad) ∈ Cd+1 tels que P =
d∑

k=0

akX
k

• 1 pt : P (φA) =
d∑

k=0

ak
(
φA

)k
=

d∑
k=0

ak φAk

• 1 pt : P (φA) (M) =
d∑

k=0

ak φAk(M) =
d∑

k=0

ak Ak × M =

(
d∑

k=0

ak Ak

)
× M = P (A) × M =

φP (A)(M)

10. Rappeler la caractérisation de la diagonalisabilité d’une matrice ou d’un endomorphisme à l’aide
d’un polynôme annulateur. En déduire que la matrice A est diagonalisable si et seulement si l’en-
domorphisme φA est diagonalisable.

• 1 pt : diagonalisable ⇔ il existe un polynôme annulateur scindé à racines simples

• 1 pt : (⇒) si A diagonalisable alors il existe P annulateur de A scindé à racines simples.
Alors : P (φA) = φP (A) = φ0Mn(C) = 0L (Mn(C)) donc P annulateur de φA

• 2 pts : (⇐)

× 1 pt : si φA diagonalisable alors il existe P annulateur de φA scindé à racines simples.
Alors : φP (A) = P (φA) = 0L (Mn(C))

× 1 pt : pour tout M , φP (A)(M) = P (A) × M = 0Mn(C) notamment vérifié en M = In
donc P (A) = 0Mn(C)

11. On note χA le polynôme caractéristique de A. Montrer que χA (φA) est l’endomorphisme nul.
En déduire une inclusion entre l’ensemble des valeurs propres de A et l’ensemble des valeurs propres
de φA, puis que la matrice A et l’endomorphisme φA ont les mêmes valeurs propres.
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• 2 pts :
× 1 pt : χA est annulateur de A (Cayley-Hamilton) donc est annulateur de φA

(raisonnement de la question précédente)
× 1 pt : Sp(φA) ⊂ {racines de χA} = Sp(A)

• 1 pt : φχφA
(A) = χφA(φA) = 0L (Mn(C)) donc φχφA

(A)(I) = χφA(A)× I = 0Mn(C)

• 0 pt : ainsi χφA annulateur de A et Sp(A) ⊂ {racines de χφA} = Sp(φA)

12. Soit λ ∈ C une valeur propre de A. Montrer qu’une matrice M ∈ Mn(C) est dans le sous-espace
propre Eλ (φA) de φA pour la valeur propre λ si et seulement si chaque colonne de la matrice M
est dans le sous-espace propre Eλ(A) de la matrice A pour la valeur propre λ.

• 2 pts :
M ∈ Eλ(φA) ⇔ φA(M) = λM

⇔ AM = λM

⇔ A× (C1 · · ·Cn) = (λC1 · · ·λCn)

⇔ (A× C1 · · ·A× Cn) = (λC1 · · ·λCn)

⇔ ∀ k ∈ J1, nK, A× Ck = λCk

⇔ ∀ k ∈ J1, nK, Ck ∈ Eλ(A)

On déduit directement de la question précédente que pour toute valeur propre λ ∈ C de la matrice A,
l’application Ψ qui à toute matrice de Mn(C) associe le n-uplet de ses colonnes :

Ψ :


m1,1 · · · m1,n

...
...

mn,1 · · · mn,n

 7→



m1,1

...
mn,1

, . . . ,


m1,n

...
mn,n




est un isomorphisme du sous-espace propre de Eλ (φA) sur (Eλ(A) )
n.

13. Dans le cas où la matrice A est diagonalisable, déduire des résultats de cette partie une expression
du déterminant et de la trace de φA en fonction du déterminant et de la trace de A.

• 1 pt : comme A diagonalisable, tr(A) =
p∑

k=1

mk λk et det(A) =
p∏

k=1

λmk
k où λ1, . . ., λp sont

les valeurs propres de A et m1, . . ., mp leurs multiplicités respectives
• 2 pts : Sp(A) = Sp(φA)

dim
(
Eλk

(φA)
)

= dim
((

Eλk
(A)

)n) (d’après la remarque)

= n× dim
(
Eλk

(A)
)

= n×mk (car A est diagonalisable)

• 2 pts : finalement

tr(φA) =
p∑

k=1

nk × λk (avec nk multiplicité de λk dans χφA)

=
p∑

k=1

dim
(
Eλk

(φA)
)
× λk (car φA diagonalisable)

=
p∑

k=1

n mk × λk

= n tr(A)

En procédant de même : det
(
φA

)
=

(
det(A)

)n
3
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EXERCICE 2
Les polynômes de Hermite / 37

On définit la suite des polynômes de Hermite dans R[X] par H0 = 1 et la relation de récurrence :

∀n ∈ N, Hn+1 = 2XHn −H ′
n

L’objectif de ce problème est d’établir quelques propriétés de cette famille de polynômes.

I.1 - Un produit scalaire sur l’espace des polynômes

Dans cette sous-partie, on introduit un produit scalaire sur R[X].

14. Soit n ∈ N. Montrer que la fonction t 7→ tn e−t2 est intégrable sur [0,+∞[, puis en déduire que
cette fonction est intégrable sur R.

• 1 pt : t 7→ tn e−t2 est continue sur [0,+∞[

• 1 pt :
∣∣ tn e−t2

∣∣ = o
t→+∞

(
1

t2

)
et t 7→ 1

t2
intégrable en +∞

• 1 pt : comme t 7→ tn e−t2 (im)paire alors les intégrales
∫ +∞

0
tn e−t2 dt et

∫ 0

−∞
tn e−t2 dt

sont de même nature

15. En déduire pour tout polynôme R ∈ R[X] que la fonction t 7→ R(t) e−t2 est intégrable sur R.

• 1 pt : la fonction t 7→ R(t) e−t2 est intégrable sur R en tant que combinaison linéaire
de fonctions intégrables sur R

On peut aussi refaire la démo précédente en remarquant : R(t) e−t2 ∼
t→+∞

ad t
d e−t2

On déduit de la question précédente que l’on peut définir l’application φ : R[X]2 → R par :

∀(P,Q) ∈ R[X]2, φ(P,Q) =

∫ +∞

−∞
P (t)Q(t) e−t2 dt

16. Montrer que φ est un produit scalaire sur R[X].

• 1 pt : φ est linéaire à gauche par linéarité de l’intégrale

• 1 pt : φ est symétrique + bilinéaire car linéaire à gauche

• 3 pts : φ est définie positive

× 1 pt : φ(P, P ) =

∫ +∞

−∞

(
P (t)

)2
f(t) dt ⩾ 0 par croissance de l’intégrale

× 1 pt : t 7→
(
P (t)

)2
f(t) est : continue / ⩾ 0 / d’intégrale nulle sur R donc nulle sur R

× 1 pt : donc pour tout t ∈ R,
(
P (t)

)2
f(t) = 0 donc

(
P (t)

)2
= 0 donc P s’annule

une infinité de fois -> c’est le polynôme nul

I.2 - Calcul de l’intégrale de Gauss

Dans cette sous-partie, on détermine la valeur de l’intégrale
∫ +∞

−∞
e−t2 dt dont on a prouvé la

convergence dans la sous-partie précédente.
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On considère les fonctions u : R → R et v : R → R définies pour tout x ∈ R par :

u(x) =

∫ x

0
e−t2 dt et v(x) =

∫ 1

0

e−(1+t2)x2

1 + t2
dt

17. Justifier que u est de classe C 1 sur R et donner une expression de sa dérivée.

• 1 pt : la fonction u est LA primitive qui s’annule en 0 de la fonction t 7→ e−t2. Cette
dernière fonction étant continue sur R, u est de classe C 1 sur R.

• 1 pt : u′(x) = e−x2

18. Justifier que v est de classe C 1 sur R et donner une expression de sa dérivée.

• 1 pt : Caractère C 1 - étude « en x »

× 1 pt : pour tout t ∈ [0, 1], la fonction ht : x 7→ e−(1+t2)x2

1 + t2
est C 1 sur [0, 1]

× 0 pt : pour tout x ∈ R, ht′(x) =
1

t (1 + t2)

(
− 2 (1 + t2) x

)
e−(1+t2)x2

= −2x

t
e−(1+t2)x2

• 3 pts : Intégrabilité - étude « en t »

× 1 pt : pour tout x ∈ R, la fonction t 7→ e−(1+t2)x2

1 + t2
est intégrable sur [0, 1] car continue

sur le segment [0, 1]

× 1 pt : pour tout x ∈ R, la fonction t 7→ −2x

t
e−(1+t2)x2

est c. p. m. sur [0, 1]

× 1 pt : si x ∈ [a, b] alors
∣∣∣∣−2x

t
e−(1+t2)x2

∣∣∣∣ = 2

1 + t2
|x | e−(1+t2)x2

⩽ 2 max (|a|, |b|)

et φ : t 7→ 2 max (|a|, |b|) est intégrable sur [0, 1] car continue sur ce segment

× 0 pt : v′(x) = −2x

∫ 1

0

e−(1+t2)x2

t
dt = −2x

∫ 1

0

e−(1+t2)x2

t
dt = −2x e−x2

∫ 1

0

e−(tx)2

t
dt

19. Montrer que la fonction x 7→ u(x)2 + v(x) est constante sur R, puis que sa valeur est
π

4
.

• 1 pt : la fonction w : x 7→ u(x)2 + v(x) est de classe C 1 sur R et pour tout x ∈ R,

w′(x) = 2u(x)× u′(x) + v′(x) = 2 e−x2

∫ x

0
e−t2 dt− 2x e−x2

∫ 1

0

e−(tx)2

t
dt

• 1 pt : changement de variable u = xt : −2x e−x2

∫ 1

0

e−(tx)2

t
dt = −2 e−x2

∫ x

0
e−u2

du

• 1 pt : ∀x, w′(x) = 0 donc w(x) = w(0) =
(
u(0)

)2
+v(0) =

∫ 1

0

1

1 + t2
dt = [ arctan(t) ]

1

0
=

π

4

20. En déduire que la valeur de l’intégrale
∫ +∞

−∞
e−t2 dt est

√
π.

• 0 pt : Existence d’une limite finie - étude « en x »

lim
x→+∞

e−(1+t2)x2

1 + t2
= 0

5
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• 2 pts : Intégrabilité (par domination) - étude « en t »

× 1 pt : ℓ : t 7→ 0 / t 7→ e−(1+t2)x2

1 + t2
c.p.m. sur [0, 1] (au moins une)

× 1 pt :

∣∣∣∣∣ e−(1+t2)x2

1 + t2

∣∣∣∣∣ ⩽ 1 et φ : t 7→ 1 est intégrable sur [0, 1]

• 0 pt : ainsi par TCD lim
x→+∞

v(x) =

∫ 1

0
0 dt = 0

Il est aussi possible (et plus simple) de procéder par encadrement.

× 1 pt : 0 ⩽
e−x2 (t2+1)

t2 + 1
⩽ e−x2

× 1 pt : par croissance de l’intégrale, 0 ⩽ v(x) ⩽ e−x2 et e−x2 −→
x→+∞

0

• 1 pt : lim
x→+∞

w(x) =

( ∫ +∞

0
e−t2 dt

)2

=
π

4

• 1 pt : par parité
∫ +∞

−∞
e−t2 dt = 2×

√
π

4
=

√
π

Partie II - Quelques propriétés des polynômes de Hermite

Dans cette partie, on établit quelques propriétés sur la famille des polynômes de Hermite. On rappelle
que la suite (Hn)n∈N est définie dans la présentation générale de l’exercice.

On considère la fonction f : x 7→ e−x2 .

21. Pour tout n ∈ N, montrer que Hn est de degré n et que son coefficient dominant est 2n.

• 1 pt : récurrence écrite correctement (dont initialisation correcte)

• 1 pt : Hn = R+ 2n Xn ou écriture similaire

• 1 pt : Hn+1 = 2XHn −H ′
n =

(
2X R−H ′

n

)
+ 2n+1 Xn+1 de degré = n+ 1

22. Montrer pour tout n ∈ N et tout x ∈ R qu’on a f (n)(x) = (−1)n Hn(x)f(x).

• 1 pt : initialisation

• 2 pt : hérédité

× 1 pt : f (n+1)(x) =
(
f (n)

)′
(x) = (−1)n (H ′

n(x) f(x) +Hn(x) f
′(x))

× 1 pt : comme f ′(x) = −2x e−x2
= −2x f(x) alors f (n+1)(x) = (−1)n (H ′

n(x)− 2xHn(x) ) f(x)

On rappelle que le produit scalaire φ sur R[X] est défini dans la sous-partie I.1.

23. Soit (p, q) ∈ N2 avec p ⩽ q. Montrer pour tout entier k ∈ J0, qK que :

φ (Hp, Hq) = (−1)q−k

∫ +∞

−∞
H(k)

p (t) f (q−k)(t) dt

• 0 pt : φ(Hp, Hq) =

∫ +∞

−∞
Hp(t) Hq(t) e−t2 dt =

∫ +∞

−∞
Hp(t)

(
(−1)qf (q)(t)

)
dt

• 3 pts : récurrence dont IPP
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24. Soit d ∈ N. Montrer que la famille ( H0, . . . ,Hd ) est une base orthogonale de Rd[X].

• 1 pt : famille libre (car échelonnée / orthogonale et constituée de vecteurs non nuls)

• 1 pt : si i < j, φ(Hi, Hj) =
〈
H

(j)
i |H0

〉
= ⟨0 |H0⟩ = 0

• 1 pt : si i > j, φ(Hi, Hj) = φ(Hj , Hi) = 0 d’après le point précédent

25. Pour tout entier p ∈ N, calculer la norme du polynôme Hp.

• 1 pt : φ(Hp, Hp) =

∫ +∞

−∞
H(p)

p (t) f(t) dt

• 1 pt : H(p)
p = 2p p! car Hp est un polynôme de degré p et de coefficient dominant 2p

• 1 pt : φ(Hp, Hp) = 2p p!

∫ +∞

−∞
e−t2 dt = 2p p!

√
π donc ∥Hp∥ =

√
2p p!

√
π

EXERCICE 3
Succession de tirages dans une urne / 16

Présentation générale

On fixe une suite (un)n∈N∗ d’entiers naturels non nuls. On suppose que l’on dispose d’un stock illimité
de boules blanches et on considère une urne contenant initialement une boule blanche et une boule
rouge indiscernables au toucher. On procède à des tirages successifs dans cette urne en respectant à
chaque fois le protocole suivant pour tout k ∈ N∗ :

1. si la boule tirée est de couleur blanche lors du kème tirage, on la replace dans l’urne et on ajoute
uk boules blanches supplémentaires ;

2. si la boule tirée est de couleur rouge lors du kème tirage, on la replace dans l’urne.

Pour tout n ∈ N∗, on désigne par Bn l’événement « la boule tirée lors du nème tirage est blanche » et
on note :

E =
⋂

n∈N∗
Bn

On considère également la suite (Sn)n∈N définie par :

S0 = 1 et ∀n ∈ N∗, Sn = 1 +
n∑

k=1

uk

Partie I - Probabilité de l’événement E

Dans cette partie, on considère la suite (pn)n∈N∗ définie par pn = P
(

n⋂
k=1

Bk

)
pour tout n ∈ N∗.

26. Montrer que la suite (pn)n∈N∗ est décroissante. En déduire que cette suite est convergente, puis
justifier que P(E) = lim

n→+∞
pn.

• 1 pt :
n+1⋂
k=1

Bk = Bn+1 ∩
n⋂

k=1

Bk ⊂
n⋂

k=1

Bk

• 1 pt : par croissance de l’application P, pn+1 ⩽ pn.
Comme de plus pn ⩾ 0, alors (pn) est décroissante minorée et donc convergente

• 1 pt : par théorème de la limite monotone P
( ⋂

k∈N∗
Bk

)
= lim

n→+∞
P
(

n⋂
k=1

Bk

)
= lim

n→+∞
pn

7
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27. Soit k ∈ N∗. Si l’événement
k⋂

i=1
Bi est réalisé, décrire la composition de l’urne en fonction de Sk

juste avant d’effectuer le (k + 1)ème tirage. En déduire la probabilité P
(
Bk+1 |

k⋂
i=1

Bi

)
.

• 1 pt : Si l’événement
k⋂

i=1
Bi est réalisé, c’est que l’on a tiré une boule blanche à chacun

des k premiers tirages. Partant d’une urne contenant initialement 1 boule blanche et
1 rouge, on a ajouté successivement u1 puis u2 puis . . .puis uk boules blanches.

L’urne contient alors 1 +
k∑

i=1
ui boules blanches et une rouge

• 1 pt : Dans ce cas, Bk+1 est réalisé SSI on a tiré une boule blanche lors du (k+ 1)ème

tirage. L’équiprobabilité des boules tirées permet d’affirmer :

P
(
Bk+1 |

k⋂
i=1

Bi

)
=

1 +
k∑

i=1
ui

1 +
(
1 +

k∑
i=1

ui
) =

Sk

1 + Sk

28. Montrer pour tout n ∈ N∗ : pn =
n−1∏
k=0

Sk

Sk + 1
.

• 1 pt : pn = P
(

n⋂
k=1

Bk

)
= P (B1)× PB1 (B2)× . . .× PB1 ∩ ...∩Bn−1 (Bn)

• 0 pt : pn = P (B1)×
S1

1 + S1
× . . .× Sn−1

1 + Sn−1

• 1 pt : P (B1) =
1

2
=

S0

1 + S0

Partie II - Caractérisation de la propriété P(E) = 0

29. Montrer que la suite (Sn)n∈N diverge vers +∞.

• 1 pt : Sn = 1 +
n∑

k=1

uk ⩾ n+ 1 car ∀k ∈ N∗, uk ∈ N∗ donc uk ⩾ 1

• 1 pt : n+ 1 −→
n→+∞

+∞, donc, par comparaison, Sn −→
n→+∞

+∞

30. Montrer que les séries
∑

ln

(
Sk

Sk + 1

)
et

∑ 1

Sk
sont de même nature.

• 1 pt : ln
(

Sk

Sk + 1

)
= − ln

(
Sk + 1

Sk

)
= − ln

(
1 +

1

Sk

)
• 0 pt : comme

1

Sk
−→

k→+∞
0 alors ln

(
1 +

1

Sk

)
∼

k→+∞

1

Sk

• 1 pt : ainsi, par équivalence des séries à termes positifs,
∑

− ln

(
Sk

Sk + 1

)
et

∑ 1

Sk
sont de même nature
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31. Montrer que P(E) = 0 si et seulement si la série
∑ 1

Sk
est divergente.

• 1 pt : ln(pn) = ln

(
n−1∏
k=0

Sk

Sk + 1

)
=

n−1∑
k=0

ln

(
Sk

Sk + 1

)
• 1 pt : P(E) = 0 ⇔ pn −→

n→+∞
0 ⇔ ln(pn) −→

n→+∞
−∞ ⇔

n−1∑
k=0

ln

(
Sk

Sk + 1

)
−→

n→+∞
−∞

⇔
n−1∑
k=0

− ln

(
Sk

Sk + 1

)
−→

n→+∞
+ ∞ ⇔

n−1∑
k=0

ln

(
1

Sk

)
−→

n→+∞
+ ∞ ⇔ La série

∑ 1

Sk
est

divergente

32. Dans cette question, on suppose que un = 1 pour tout n ∈ N∗. Déterminer P(E).

• 1 pt : pn =
1

2
× 2

3
× . . .× n

n+ 1
=

1

n+ 1
−→

n→+∞
0

33. Proposer une suite (un)n∈N∗ telle que P(E) ̸= 0 en justifiant votre réponse.

• 1 pt : on choisit par exemple un = n pour tout n ∈ N∗

• 1 pt : dans ce cas, Sn = 1 +
n∑

k=1

k = 1 +
n(n+ 1)

2
∼

n→+∞

n2

2
donc

1

Sn
∼

n→+∞

2

n2

EXERCICE 4
Fonction zêta / 15

On note ζ la fonction de la variable réelle x définie par : ζ(x) =
+∞∑
n=1

1

nx
.

On note Dζ son ensemble de définition.

34. Déterminer Dζ .

• 1 pt : la série
∑ 1

nx
est convergente SSI x > 1 (critère de Riemann). Ainsi : Dζ = ]0,+∞[

35. Montrer que ζ est continue sur Dζ .

• 0 pt : pour tout n ∈ N∗, on note fn : x 7→ 1

nx
=

1

ex ln(n)
=

1

eln(n)x

• 1 pt : Caractère C 0

Pour tout n ∈ N, la fonction fn est de classe C 0 sur ]1,+∞[

• 2 pts : Convergence uniforme sur tout segment (par convergence normale)

Pour tout [a, b] ⊂ ]1,+∞[ la série de fonctions
∑

fn converge normalement sur [a, b].
En effet, pour tout x ∈ [a, b], a ln(n) ⩽ x ln(n) ⩽ b ln(n) donc ea ln(n) ⩽ ex ln(n) ⩽ eb ln(n)

donc
∣∣∣∣ 1nx

∣∣∣∣ ⩽ 1

na
. Ainsi, fn bornée et ∥fn∥∞,[a,b] ⩽

1

na
+ th de comparaison des SATP

• 1 pt : Par théorème de régularité, la fonction
+∞∑
n=0

fn est de classe C 0 sur TOUT SEGMENT

[a, b] de ]1,+∞[. Elle est donc continue sur ]1,+∞[

36. Étudier le sens de variation de ζ.

• 1 pt : ∀x ⩽ y, fn(x) ⩽ fn(y) (les fonctions fn sont décroissantes)

• 1 pt : ainsi,
n∑

k=1

fk(x) ⩽
n∑

k=1

fk(y) et on passe à la limite quand n → +∞ (possible par

convergence de la série de fonctions
∑

fn)
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37. Justifier que ζ admet une limite en +∞.

• 1 pt : la fonction ζ est décroissante et minorée (par 0) sur ]1,+∞[. Par théorème de
la limite monotone, elle admet donc une limite finie en +∞

38. Soit x ∈ Dζ et soit n ∈ N tel que n ⩾ 2. Montrer :∫ n+1

n

dt

tx
⩽

1

nx
⩽

∫ n

n−1

dt

tx

• 1 pt : n ⩽ t ⩽ n+ 1 donc ln(n) ⩽ ln(t) ⩽ ln(n+ 1) et x ln(n) ⩽ x ln(t) ⩽ x ln(n+ 1)

On en conclut :
1

nx
⩾

1

tx
⩾

1

(n+ 1)x

• 1 pt : par croissance de
∫ n+1

n
:
1

nx
=

∫ n+1

n

1

nx
dt ⩾

∫ n+1

n

1

tx
dt ⩾

∫ n+1

n

1

(n+ 1)x
dt =

1

(n+ 1)x

• 0 pt : si n ⩾ 2, l’inégalité de droite en n− 1 donne l’inégalité de droite de l’énoncé

39. En déduire, que pour tout x ∈ Dζ :

1 +
1

(x− 1) 2x−1
⩽ ζ(x) ⩽ 1 +

1

x− 1

• 1 pt :
∫ N+1

2

dt

tx
=

N∑
n=2

∫ n+1

n

dt

tx
⩽

N∑
n=2

1

nx
⩽

N∑
n=2

∫ n

n−1

dt

tx
=

∫ N

1

dt

tx

• 1 pt :
∫ +∞

2

dt

tx
⩽

+∞∑
n=2

1

nx
= ζ(x)− 1 ⩽

∫ +∞

1

dt

tx
=

[
t−x+1

−x+ 1

]+∞

1

40. Déterminer la limite de ζ(x) lorsque x tend vers 1 par valeurs supérieures.

• 1 pt : 1 +
1

(x− 1) 2x−1
−→
x→1+

+∞ donc ζ(x) −→
x→1+

+∞

41. Déterminer la limite de ζ(x) lorsque x tend vers +∞.

• 1 pt : 1 +
1

(x− 1) 2x−1
−→

x→+∞
1 et 1 +

1

x− 1
−→

x→+∞
1

• 1 pt : donc, par théorème d’encadrement, ζ(x) −→
x→+∞

1
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