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DS5 / 103

EXERCICE 1
Etude d’un endomorphisme matriciel / 33

Partie I - Généralités

1. Montrer pour tout A € ., (C) que lapplication ¢ 4 est un endomorphisme de .#,(C).

o 1pt: oa(MMy+ AoMa) = A (MM + XoMy) = M AM) + Ao AMs = Xipa(My) 4 Ao a(Ms)
« 1 pt : caractére endo o(#2(C)) C .#5(C)

2. Montrer pour tout (A4, B) € .#,(C)? que pa0pp = pap.
« 1pt:paopp(M)=ypalpp(M))=pa(BM)=A(BM) = (AB)M = @ap(M)

3. Soit A € #,(C). Déduire de la question précédente que ¢4 est un isomorphisme si et seulement
si la matrice A est inversible. Indication : si @4 est un isomorphisme, on pourra considérer un
antécédent par p4 de la matrice identité de ., (C).

« 1 pt: (=) sipa: #,(C)— #,(C) est un isom, on note B = ¢, (I,,). Alors pa(B) =1,
donc AB = I,, donc A inversible d’inverse B

« 1 pt: (<) si A inversible, 409 -1 =, =id 4, () et donc 4 est un isomorphisme

Partie II - Etude d’un exemple

Dans cette partie uniquement, on suppose que n = 2. On considére un nombre a € C et la matrice :

A= (3 i) € 5(C)

4. Déterminer une condition nécessaire et suffisante sur le nombre a € C pour que la matrice A soit
diagonalisable.

X -1 -1
0 X —a

o 1 pt :sia#1, alors A posséde exactement deux valeurs propres distinctes (a savoir
a et 1), et puisque A € .#>(C), A est diagonalisable

« 0pt: xa(X)= = (X -1)(X —a)

e 1 pt:sia=1, alors A posséde 1 pour unique valeur propre. Si A était diagonalisable,

alors il existerait P € GLy(C) tel que A = P x <é (1)) x Pl = pp~l = L,
. . . . 10 0 1 0 0 0 0
5. Déterminer la matrice de ¢4 dans la base C = <<0 0), <0 0), (1 O>’ <0 1)) de #,(C).

cupesea(d =0 0) et eat( = (¢
. 1pt:<p,4(<(1) 8)):((1 8) et 9014((8 (1))):<8 i)

On en déduit : Matg(pa) =
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6. En déduire les valeurs propres de ¢4, puis déterminer la dimension de chaque sous-espace propre
de w4 en fonction de a € C.

e 0 pt: Sp(pa) ={1,a} ou Sp(pa) = {a} (cas a =1)
+ 1 pt : théoréme du rang dim (.#>(C)) = dim (Im(pa — Aid)) + dim (Ker(pa — Aid))
e 2pts:casa#1
x 1 pt : dim (Im(pa —id)) =rg(A — I4) = 2 donc dim (Ey(pa)) =4—-2=2
x 1 pt : dim (Im(pa — aid)) =rg(A — aly) = 2 donc dim (E,(pa)) =4—-2=2
+ 0 pt : cas a =1, le méme calcul donne dim (Ei(¢4)) =2
7. Déterminer une condition nécessaire et suffisante sur a € C pour que ¢4 soit diagonalisable.
« 1 pt : v, diagonalisable < a # 1
dim (E,(¢a)) + dim (E1(pa)) =4 = dim (#(C))  (sia#1)

« 1pt: dim (E =
p > ( )\(‘PA)) { dim (E1(<PA)) =2 # dim (///2((@)) (sia=1)

AESp(pa)

Partie III - Réduction de ¢4 si A est diagonalisable

Dans cette partie, on considére une matrice A € .#,(C). Nous allons étudier les propriétés liant les
éléments propres de la matrice A et ceux de 'endomorphisme ¢ 4.

8. Montrer : Vk € N, (04)* = ¢ 4.
o 2 pts : par récurrence (écrite correctement) a I’aide de la question 2

9. En déduire : VP € C[X], P (pa) = pp(a)-

d
« 1 pt : soit P € C[X]. Alors, il existe d € N et (ag,...,aq) € C/*! tels que P = > a,X*
k=0

d d
c1pt:Ppa)=3 ar (0a)" =Y ar o
k=0 k=0
d d d
.1pt:P(g0A)(M):ZakgoAk(M):ZakAkxM:<ZakAk>><M:P(A)><M:
k=0 k=0 k=0

opay (M)

10. Rappeler la caractérisation de la diagonalisabilité d’une matrice ou d’'un endomorphisme a 'aide
d’un polynéme annulateur. En déduire que la matrice A est diagonalisable si et seulement si 1’en-
domorphisme @ 4 est diagonalisable.

« 1 pt : diagonalisable < il existe un polyndéme annulateur scindé a racines simples
« 1 pt: (=) si A diagonalisable alors il existe P annulateur de A scindé a racines simples.
Alors : P(pa) = ¢pa) = ©0_4, ) = .z (a,(c)) donc P annulateur de ¢4
e 2 pts: (<)
x 1 pt : si p4 diagonalisable alors il existe P annulateur de ¢ 4 scindé a racines simples.
Alors : ppa) = P(pa) = 024, )
x 1 pt : pour tout M, pp4(M) = P(A) x M = 04, () notamment vérifié¢ en M = I,
donc P(A) = Ok%n((c)

11. On note x4 le polynéme caractéristique de A. Montrer que x4 (¢4) est 'endomorphisme nul.
En déduire une inclusion entre ’ensemble des valeurs propres de A et ’ensemble des valeurs propres
de @4, puis que la matrice A et 'endomorphisme ¢ 4 ont les mémes valeurs propres.
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e 2 pts :

x 1 pt : x4 est annulateur de A (Cayley-Hamilton) donc est annulateur de ¢4
(raisonnement de la question précédente)

x 1 pt : Sp(pa) C {racines de x4} = Sp(A)

« 1pt: oy, () = Xealpa) = 020z, ) donc ¢y, (4)(I) = Xpa(A) X I =0.4,(c)
« 0 pt : ainsi y,, annulateur de A et Sp(A) C {racines de x,,} = Sp(¢a)

12. Soit A € C une valeur propre de A. Montrer qu'une matrice M € ., (C) est dans le sous-espace
propre E) (¢a) de w4 pour la valeur propre A si et seulement si chaque colonne de la matrice M
est dans le sous-espace propre E)(A) de la matrice A pour la valeur propre A.

e 2 pts :
MEE)\((,DA)

pa(M) =AM
AM =AM
AX(Cr---Cp) = (ACL---ACy)
(AxCr---AxCy) = (ACL---ACy)
VEke[1,n], Ax Cy=\Cx

& Vke([l,n],Cr € Ex(A)

r ¢ 000

On déduit directement de la question précédente que pour toute valeur propre A € C de la matrice A,
lapplication ¥ qui & toute matrice de .#;,(C) associe le n-uplet de ses colonnes :
mi1 o Min min min
v : : — N PR

Mnp1 -+ Mnpn Mn,1 Mnn

est un isomorphisme du sous-espace propre de E) (p4) sur ( Ex(A))".

13. Dans le cas ou la matrice A est diagonalisable, déduire des résultats de cette partie une expression
du déterminant et de la trace de ¢4 en fonction du déterminant et de la trace de A.

2 p
+ 1 pt : comme A diagonalisable, tr(A) = Y my \; et det(A) = [] A" ot Ay, ..., A\, sont
k=1 k=1
les valeurs propres de A et mq, ..., m, leurs multiplicités respectives

e 2 pts : Sp(A) = Sp(pa)

dim (E), (¢4)) = dim ((E)\k(A))n> (d’apres la remarque)
= nxdim (EA,C(A))

= nxmyg (car A est diagonalisable)

o 2 pts : finalement

P
tr(pa) = kz—:1 nE X Ak (avec ny, multiplicité de Ay, dans x,, )

= Y dim(E)\(pa)) x \x  (car o4 diagonalisable)
k=1

p
= ankx)\k
k

=1
= n tr(A)

En procédant de méme : det (p4) = (det(4))"
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EXERCICE 2
Les polyndémes de Hermite / 37

On définit la suite des polynomes de Hermite dans R[X] par Hy = 1 et la relation de récurrence :
vneN, Hy,y1 =2XH, — H),

L’objectif de ce probléme est d’établir quelques propriétés de cette famille de polyndémes.

I.1 - Un produit scalaire sur ’espace des polynomes

Dans cette sous-partie, on introduit un produit scalaire sur R[X].
14. Soit n € N. Montrer que la fonction ¢t + t" et

cette fonction est intégrable sur R.

est intégrable sur [0, +oo], puis en déduire que

e 1pt:t—t" e’ est continue sur [0, +o00[

1 1
e 1pt: ‘t” et ‘ = o0 — | et t — — intégrable en +
t—too \ t2 12
5 +o00 9 0 )
e 1 pt: comme t+— t" e”?" (im)paire alors les intégrales / t" e " dt et / t" eV dt
0 —00

sont de méme nature
15. En déduire pour tout polynéme R € R[X] que la fonction ¢t — R(¢) et est intégrable sur R.
« 1 pt : la fonction ¢t — R(t) e " est intégrable sur R en tant que combinaison linéaire

de fonctions intégrables sur R

2 2
—t ~ aq td e—t

t——+oo

On peut aussi refaire la démo précédente en remarquant : R(t) e

On déduit de la question précédente que I'on peut définir I'application ¢ : R[X]? — R par :

“+00

W(P.Q) € RIXP?, ¢(P.Q) = / P(H)Q(t) et di

—00
16. Montrer que ¢ est un produit scalaire sur R[X].

o 1 pt : ¢ est linéaire a gauche par linéarité de 1’intégrale
o« 1 pt : ¢ est symétrique + bilinéaire car linéaire a gauche
« 3 pts : ¢ est définie positive
+oo
x 1pt:pPP) = / (P(L‘))2 f(t) dt > 0 par croissance de l’intégrale
— 00

x 1pt:t— (P(t) )2 f(t) est : continue / > 0 / d’intégrale nulle sur R donc nulle sur R

x 1 pt : donc pour tout t € R, (P(t))2 f(t) = 0 donc (P(t))2 = 0 donc P s’annule

une infinité de fois -> c’est le polynéme nul

I.2 - Calcul de I’'intégrale de Gauss

+oo
. ) . o 2 .
Dans cette sous-partie, on détermine la valeur de l'intégrale / e ¥ dt dont on a prouvé la
—0o
convergence dans la sous-partie précédente.
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On considére les fonctions v : R — R et v : R — R définies pour tout x € R par :

T e 1 e—(1+t2)x2
u(z) = e dt et w(x)= —— dt
0 o 1+2?

17. Justifier que u est de classe €' sur R et donner une expression de sa dérivée.

e 1 pt : la fonction u est LA primitive qui s’annule en 0 de la fonction ¢ — e ’. Cette
derniére fonction étant continue sur R, u est de classe ¢! sur R.
2
x

e 1 pt:u(z)=e"

18. Justifier que v est de classe €' sur R et donner une expression de sa dérivée.

e 1pt: Caractére %' - étude « en z »

e—(1+t2)x2
142
(—201+) z) o (1+7)2% _ _2790 o~ (1+12)a?

x 1 pt : pour tout ¢ € [0, 1], la fonction h, : z — est ¢! sur [0,1]

1

x 0 pt : pour tout z € R, h,/(z) = TaT o)

« 3 pts : | Intégrabilité - étude «en ¢ »

ef(lthQ)mQ

EEpTa est intégrable sur [0, 1] car continue

x 1 pt : pour tout z € R, la fonction t —
sur le segment [0, 1]

X e_(1+t2)x2

2
x 1 pt : pour tout z € R, la fonction ¢ +— - est c. p. m. sur [0, 1]

2 2
x 1 pt:six€la,b] alors _Tx e~ (LHt)e? | I e || e (1H2)7” < 9 max (lal, [b])

et ¢ :t— 2 max (|al,|b]) est intégrable sur [0,1] car continue sur ce segment

1 o= (1+8%)a? 1 o= (1+8%)a? Lo [l e ()
xOpt:v’(x):—Qx/ dt:—Qx/ —— dt=-2z e " / dt
0 t 0 t 0 t

7r
19. Montrer que la fonction = — u(x)? + v(z) est constante sur R, puis que sa valeur est e

« 1 pt : la fonction w : = — u(z)? + v(z) est de classe €' sur R et pour tout z € R,
z 1 o—(tx)?

w'(z) = 2u(w) x o/ (z) + v/ (2) =2 e / e dt — 2z e / S

0 0

1 —(tx)? x
« 1 pt: changement de variable| u=at |:—2x e’ / © ; dt = —2e™™ / e du
0 0
1
1

e 1pt:Vz,w' (z) =0donc w(z) =w(0) = W—i—v(O) :/0 e dt = [ arctan(t) ]é = %

+o00 9

20. En déduire que la valeur de l'intégrale / et dt est /7.

—0o0

« 0 pt: Existence d’une limite finie - étude « en z »
e7(1+t2):1:2

im —s=
ztoo 14 ¢2
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« 2 pts : | Intégrabilité (par domination) - étude « en ¢ »
o~ (141%)2
x 1pt:l:t—0/t— 3@ &pm.sur [0,1] (au moins une)
e7(1+t2)x2
x 1 pt : i < let p:tr— 1 est intégrable sur [0, 1]

1
« 0 pt : ainsi par TCD lim v(z) :/ 0dt=0
0

T—>+00
Il est aussi possible (et plus simple) de procéder par encadrement.
e—zQ (t241)
241
2 2

x 1 pt : par croissance de l’intégrale, 0 < v(z) < e ™ et e ” —+> 0
T—+00

—x2

x 1 pt:0< <e

+o0 2 2 ™
1 t: 1 = - dt = —
pe it = ([ e <

+oo 2 T
1pt:parparité/ et dt:2><\/;:ﬁ

—00

Partie II - Quelques propriétés des polynémes de Hermite

Dans cette partie, on établit quelques propriétés sur la famille des polynémes de Hermite. On rappelle
que la suite (Hp), o est définie dans la présentation générale de 1'exercice.

< 1a . _.2
On considére la fonction f:x — e™".

21. Pour tout n € N, montrer que H,, est de degré n et que son coefficient dominant est 2.

« 1 pt : récurrence écrite correctement (dont initialisation correcte)
e 1 pt: H,=R+2" X" ou écriture similaire

e 1pt: Hyy =2XH, — H = (2X R—H,’L) + 271 X7+ de degré = n + 1

22. Montrer pour tout n € N et tout z € R qu'on a f(z) = (=1)* H,(z)f(x).
o 1 pt : initialisation
o 2 pt : hérédité
« 1pt: [ (2) = (F0) (@) = (—1)" (H}(2) f(2) + Hy(2) f'(2))
« 1pt:comme f/(z) = -2z e = —2z f(z) alors (") (z) = (—1)" (H/,(z) — 2z Hn(z)) f(z)
On rappelle que le produit scalaire ¢ sur R[X] est défini dans la sous-partie I.1.
23. Soit (p,q) € N? avec p < ¢. Montrer pour tout entier k£ € [0, ¢q] que :

+o0o
o (Hy, Hy) = (—1)1* / HIO () £09 (1) dt

—0o0

—+00 —+00

coptig, )= [ H0HG e d= [ B0 ((1)700) d

—0o0 —0o0

e 3 pts : récurrence dont IPP
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24. Soit d € N. Montrer que la famille ( Hy,..., Hy ) est une base orthogonale de R4[X].
« 1 pt : famille libre (car échelonnée / orthogonale et constituée de vecteurs non nuls)
e 1pt:sii<j, o(H; Hj) = <H}j) yH0> = (0| Ho) =0
e 1 pt:sii>j, o(H;,Hj) = p(H;, H;) =0 d’aprés le point précédent

25. Pour tout entier p € N, calculer la norme du polynéme H),.

+oo
Clptsg(t, Hy) = [ HPE ) de
—o0
e 1pt: HI(;p) = 2P p! car H, est un polynéme de degré p et de coefficient dominant 27
+oo
o 1 pt: o(Hy, Hy) = 2P pl / et dt = 2r p! V7 donc ||H,|| = /27 p! /7
—0o0

EXERCICE 3
Succession de tirages dans une urne / 16

Présentation générale

On fixe une suite (uy),, oy d’entiers naturels non nuls. On suppose que 1'on dispose d'un stock illimité
de boules blanches et on considére une urne contenant initialement une boule blanche et une boule
rouge indiscernables au toucher. On procéde & des tirages successifs dans cette urne en respectant a
chaque fois le protocole suivant pour tout k& € N* :

1. si la boule tirée est de couleur blanche lors du k®™¢ tirage, on la replace dans I'urne et on ajoute
uy, boules blanches supplémentaires ;

2. si la boule tirée est de couleur rouge lors du k®™€ tirage, on la replace dans 'urne.

Pour tout n € N*, on désigne par B,, 'événement « la boule tirée lors du n®™® tirage est blanche » et
on note :

E= () B,
neN*

On considere également la suite (Sy,),cy définie par :

n
So=1 et VneN, S, =1+ > u
k=1

Partie I - Probabilité de ’événement F

n
Dans cette partie, on considére la suite (py),,cn- définie par p, =P < N Bk> pour tout n € N*,
k=1

26. Montrer que la suite (py,) est décroissante. En déduire que cette suite est convergente, puis

neN*
justifier que P(E) = lim p,.
n—-+o0o
n+1 n n
olpt:ﬂBk:Bn+1ﬂﬂBkC ﬂBk
k=1 k=1 k=1

« 1 pt : par croissance de Papplication P, p,.+1 < p,.
Comme de plus p, > 0, alors (p,) est décroissante minorée et donc convergente

n
« 1 pt : par théoréme de la limite monotone P < N Bk> = lim P < N Bk> = lim p,
keN* n—+00 k=1 n——+o0o
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k
27. Soit k € N*. Si 'événement [ B; est réalisé, décrire la composition de 'urne en fonction de Sy
i=1

k
juste avant d’effectuer le (k + 1)°™° tirage. En déduire la probabilité P (Bk+1 | N Bi>.
i=1

k
« 1 pt: Sil’événement (] B; est réalisé, c’est que I’on a tiré une boule blanche a chacun
i=1
des k premiers tirages. Partant d’une urne contenant initialement 1 boule blanche et
1 rouge, on a ajouté successivement u; puis ug puis ...puis u; boules blanches.
k
L’urne contient alors 1+ ) u; boules blanches et une rouge
i=1
« 1 pt : Dans ce cas, By est réalisé SSI on a tiré une boule blanche lors du (k + 1)¢™¢
tirage. L’équiprobabilité des boules tirées permet d’affirmer :
k
14>
= _ Sk
145k

k
P <Bk+1 N Bi) = ;
=1 1 + (1 + Z uz)
i=1

n-1 g
28. Montrer pour tout n € N* : p, = [] L
k=0 Sk + 1

n
P | pt : Dn :P<ﬂ Bk> :P(Bl) XIP)Bl (BQ) X ... XPBlﬂ...ﬂBn,l (Bn)
k=1

S1 Sn—1
«0pt:p,=P(B R V.o S
pt=p (B> T g ¥ X T2,
1S,
o]_ t.PB = — =
pt: P(B) =5 =1 "¢

Partie II - Caractérisation de la propriété P(F) =0

29. Montrer que la suite (Sy,),cy diverge vers +oo.
n
elpt: S, =1+ > ur>n+1car Vk € N*, u € N* donc uy > 1
k=1

elpt:n+1 — 4 o0, donc, par comparaison, S, — + o0

n—-+o0o n—-+o0o
L. Sk 1 .
30. Montrer que les séries > In et > — sont de méme nature.
S+ 1 S
Sy, Sr+1 1
e« 1 pt:l =1 =—In(14+ —
P n(5k+1) n( Sk > n<+5k>
0 pt ! — 0 al In(1+ ! !
o : comme — alors In — ~ =
P Sk k—+oo SL ) kot Sk
o L. R - Sk 1
« 1 pt : ainsi, par équivalence des séries a4 termes positifs, Y. —In et —
Sk +1 Sk

sont de méme nature
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1
31. Montrer que P(E) = 0 si et seulement si la série ) 5 est divergente.
k

n—1 Sk Sk >
e 1 pt:In(p,) =1 1

—1 Sk
‘1 pt-P<E>:0®pnnm0@ln@n>nm ~oe E m(gh) o o

n—1 Sk n—1 1 . 1
<:>k2::0 —ln<5k+1> e TE Z ln(Sk) —> + 00 < La série ) S—kest

n——+00
divergente
32. Dans cette question, on suppose que u, = 1 pour tout n € N*. Déterminer P(E).

n 1
= —
n—+1 n—+1 n—+oo

1 2
Olpt:pn:§X§X...X

33. Proposer une suite (uy),,cn- telle que P(E) # 0 en justifiant votre réponse.

« 1 pt : on choisit par exemple u,, = n pour tout n € N*

n n(n+1) n? 1 2
° ]_ . = 1 = 1 _— ~ J— - Py —
pt : dans ce cas, S, +k§1 k + 5 et donc S Wl 2
EXERCICE 4
Fonction zéta / 15
+oo ]
On note ( la fonction de la variable réelle x définie par : ((z) = > —.
n=1 "1

On note Z, son ensemble de définition.

34. Déterminer Z.
1
« 1 pt:lasérie ) — est convergente SSIz > 1 (critére de Riemann). Ainsi: Z; = |0, +-o0]
n

35. Montrer que ( est continue sur Z.

1 1 1
nx ez In(n) eln(n) x

o 0 pt : pour tout n € N*, on note f, : x — —

« 1 pt: | Caractére ¢°

Pour tout n € N, la fonction f,, est de classe ¢ sur |1, +o0]

o« 2 pts: Convergence uniforme sur tout segment (par convergence normale)

Pour tout [a,b] C ]1,+00[ la série de fonctions ) f, converge normalement sur [a,b|.
En effet, pour tout z € [a,b], a In(n) < z In(n) < b In(n) donc e® (™ L e* (") L b n(n)

donc

1 1 1
x‘ < —. Ainsi, f,, bornée et | fu[|o a5 < — + th de comparaison des SATP
n n n

“+o00
« 1 pt : Par théoréme de régularité, la fonction Y f, est de classe ¥ sur TOUT SEGMENT
n=0
[a,b] de |1,+oc[. Elle est donc continue sur |1, +o0]
36. Etudier le sens de variation de (.

o 1 pt: Vz <y, fn( ) < fu(y) (les fonctions f,, sont décroissantes)
« 1 pt : ainsi, Z fr(z) < Z fr(y) et on passe a la limite quand n — + oo (possible par

convergence de la série de fonctions > f,)
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37. Justifier que ¢ admet une limite en +oco0.

« 1 pt : la fonction ( est décroissante et minorée (par 0) sur |1, +oo[. Par théoréme de
la limite monotone, elle admet donc une limite finie en +oo

38. Soit x € Y et soit n € N tel que n > 2. Montrer :

/”“ dt 1 /” dt

n t* n® n—1 t*

e lpt:n<t<n+1doncIn(n)<In(t)<In(n+1) et zln(n) < zln(t) < xln(n + 1)
1 1

1
Onenconclut: —> — > ——
n® =t (n+1)

n+1 1 n+1 1 n+1 1 n+1 1
« 1 pt : par croissance de / t— = / — dt > / — dt > / dt =

X X
n n n

e« 0 pt : si n > 2, Pinégalité de droite en n — 1 donne I’inégalité de droite de I’énoncé

39. En déduire, que pour tout x € 7 :

1 1
1+ —— < <1
Tt S W R
N+logqp Nl gy N1 I R Nodt
.1pt:/ —Z/ — < > — < ) _/ -
2 tr n=2 Jn t* n=2 n’ n=2 Jn—1 t* 1 tr

+oo dt +00 1 “+o0o dt t—m—}—l Foo
-1pt:/ — < szqa?)—lg/ x:[ ]
2 t n=2 n 1 t —XT + 1 L

40. Déterminer la limite de ((z) lorsque x tend vers 1 par valeurs supérieures.

1
—_— — d —
(.f — 1) 21 o 4+ oo done C(.T) z—1t oo

e 1 pt:1+

41. Déterminer la limite de {(x) lorsque z tend vers +oc.

1
Piptr e o b e Ty

« 1 pt : donc, par théoréme d’encadrement, ((z) —+> 1
T—+00

10

n+1)* (n+1)=



