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EXERCICE 1
Soit n € N*. On considére une matrice A € .#,(R) et on note : B = <i ;i)

Etude d’un cas particulier

Dans cette partie, on note : A = G ;)

1. Justifier que A est diagonalisable et donner ses valeurs propres.
2. Montrer que 0 est valeur propre de B et donner la dimension de I’espace propre associé.

3. Soit A une valeur propre de A et soit X € .#51(R) un vecteur propre associé a .
Exhiber un vecteur propre de B.

4. Démontrer que la matrice B est diagonalisable.

Cas ou A est diagonalisable

On suppose dans cette partie que A € ., (R) est une matrice diagonalisable qui posséde n valeurs
propres distinctes.

5. En s’inspirant de 1’étude précédente, démontrer que la matrice B est diagonalisable.

PROBLEME 1

Objectifs
Dans la partie I, on considére deux exemples de fonctions indéfiniment dérivables sur R et on s’in-
terroge sur l'existence d’un développement en série entiére dans un voisinage de 0 pour ces fonctions.

Dans la partie II, indépendante de la partie I, on démontre le théoréme de Borel en construisant,
pour toute suite réelle (b,)pen, une fonction f indéfiniment dérivable sur R telle que pour tout p € N,

on ait : f®)(0) = b,,.

Partie I — Deux exemples de fonctions indéfiniment dérivables

On considére la fonction f définie sur R par :

+0o0 .
Ve eR, f(x)= / e~t1=itT) gy
0

6. Montrer que la fonction f est bien définie sur R.

« 1 pt : Papplication t — e '1=%%) est continue sur Ry, en tant que composition de
I’application polynomiale t — —t(1 — itx), continue sur R, et a valeurs dans C, et de
P’application exponentielle, continue sur C

«1pt: ’e—t(l—it:v)‘ - 0 (1)

t——4oo t2
o 1 pt : mise en place correcte du théoréme de comparaison des intégrales généralisées
de fonctions continues positives
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+00
Pour tout p € N, on note I', = / tPe™t dt.
0

7. Pour tout p € N, justifier 'existence de I', et déterminer une relation entre I';)11 et T',.

10.

elpt:|tPet= o (&)oultlelt|= o (e*% 0

$2
t—+o0 t—+o0o
« 0 pt : mise en place correcte du théoréme de comparaison des intégrales généralisées

de fonctions continues positives (1 pt s’il n’a pas été mis dans la question précédente)
a

a a
e 1pt: / trtle™t dt = [—tp“e_t]g—/ (—e D (p+1)tP dt = —aPre ™+ (p+ 1)/ e P dt
0 0 0

elpt: lim a?™le®=0et 1= (p+1)T,

a—+0o0
On met 2 points si I’'IPP réalisée directement sur ’intervalle [0, +oco| est justifiée

En déduire, pour tout p € N, la valeur de I',,.

elpt:Tp=pE+),=...=(p+1)x...x1T
+oo n

. lpt:Foz/ e Y du= [—e_“]ooozl
0

Montrer que f est indéfiniment dérivable sur R et déterminer, pour tout (z,p) € R x N, f (®) ().
o 1pt:u,:trs e t172) of ¢y [y, ()] = e TT°?)| = e~ est intégrable
« 3 pt:
x 1 pt:VpeN,VteR,, Papplication u; : x — e
x 1 pt: uip)(x) = (it*)"e teit’

—t(1-itr) ggt de classe €P sur R

x 1 pt : hypothése de domination : ]uip) (z)] = t?Pe~t et t — t?Pe~! est intégrable

—+00 —+00 )
«0pt:VpeN, VzeR, fP(z) —/ uip)(m) dt = z'p/ 1P t=itz) gy
0 0

(o
En déduire le rayon de convergence de la série entiére » ) xP.

ps0 P!
La fonction f est-elle développable en série entiére en 07

p [T P 2p)!
« 1 pt:VpeN, f(m,(o) = 1’:/ t?Pe~t gt = 1—1“21, = ip( p)
P P Jo p! p!
f(p+1)(0)
1 pt: (p+1) = Qe+t pl_ @pt2)2ptD) 4y 4o
. pt: ( ) - (p+1)! 2p)! — p+1 Ps oo p—>+00
p!

e 1 pt:on en déduit R =0 et f n’est donc pas développable en série entiére en 0 (sinon,
au voisinage de 0, f serait égale a la somme de cette série entiére qui diverge)

On considére la fonction g définie sur R par : Vo € R, g(z) = Z e~ k(—ikz),

11.

Montrer que g est indéfiniment dérivable sur R et déterminer, pour tout (z,p) € R x N, 2 ().

e« 0 pt : pour tout k£ € N, on note g : © — e k(1—ikz)

« 1 pt : la fonction g; est de classe €7 et Vr € R, g,gp)( )= (ik?)Pe—Feik’®

e 1 pt: pour tout p € N, Hg H = k?Pe~" et la série > ||g(p)HoO converge par comparaison
a la série de Riemann d’exposant 2




Mathématiques

+00 +o0o .
e 1pt:gP(2)= Y g (2) =iy ke helts
k=0 k=0
12. Montrer : Vp € N, ‘g(p) (0) ‘ > p?P e7P,

“+o00
Z k.2pefk
k=0

o 1pt: ‘g(p)(())‘ = = |i|P

“+00
PPy ke
k=0

+o00
L 1pt s [gO0)] = 3 ket = e+ S ek > e
k=0 k2P 2o

g®(0) o

18. En déduire le rayon de convergence de la série entiére '
p>0 P-

La fonction g est-elle développable en série entiére en 07
e lpt:a,= }g(p)(O)‘ > p?P e P = by ainsi R, < Ry
(p + 1)2+D)e=(p+1)

1 e+ 1) (14" (p+ De ! > pe-! donc R, < Ry =0
« 1 pt: p2pe_p = ( + 13) (p+1)e " = pe p_:)oo +o00 donc R, < Ry =
p!

« 1 pt : g n’est donc pas développable en série entiére en 0 (sinon, au voisinage de 0, g
serait égale a la somme de cette série entiére qui diverge)

Partie IT — Le théoréme de Borel

14. Déterminer deux nombres complexes a et b tels que pour tout x € R :

1 a b

1+x2_m—i+x+i

.1pt:a:2%etb:—2ii

1
15. On consideére la fonction ¢ définie sur R par : Vo € R, ¢(x) = oyl
Montrer par récurrence : Vp € N,Vz € R, 9P (z) = =0rpt
° Y Y (x _ Z)p+1 .

o 1 pt : ¢ est de classe ¥ sur R, en tant qu’inverse d’une application polynomiale qui
ne s’annule pas sur R

o 1 pt : intialisation
o 1 pt : hérédité w(pﬂ)(:n) = (w(p))’ (x) = (=1)Pp! x (—%) = (=1)PH(p+1)! x m

16. Déterminer, pour tout p € N, la dérivée p®™¢ de la fonction ¢ définie sur R par :

1
Ve eR =
(=1)Pp!
e 1 pt : de méme, Vp € N, la dérivée p-iéme de z — -est v — ———
i (x + )P+l
—1)Pp! —1)Pp! +4)PT1 —(g—q)Pt1
o 1 pt H VZL’ S R? (pgp)(.’ﬂ) = ( 2)1' P ((z—il)l’+l - (z+i1)p+1) = ( 2)i p X (x 2)($2+1)(§+11)

1

17. Montrer : Vp € N,Vx € R, | (z +i)PH — (2 —4)P~! | <2(1+ xQ)%

|
En déduire : Vp € N,Vz € R*, }‘ng)(x) ‘ < ‘xfﬁ'
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+1
o 1pt: |(a4i)PH —(2—i)P~ Y = [20Im (2 +0)P*1) | < 2|(z + )P = 2Ja+iPH =2 ( 2t 1)p

L (@rPt—(a—iyp 211y 5 !
« 1pt: “ng)(x>’ = % X | (x2+1)PF1 | =plx ((93:32+1))p+1 - (mhﬁ)%l
! ! !
o 1 pt : P pEL g pp+1 - |I‘Z;)7+1

@+1)"F @)

18. Pour tout réel «, notons ¢, la fonction définie sur R par :

1
Vz e R =T 3.3
v ER, palr) =55
(») P!
Montrer : Vp € N,Vz € R*, |a| x |pa (:C)‘ S |z |p+1
x

elpt:casa=0

(»)

e 1 pt: p,(x) =¢pi(az) donc Va € R, Vp e N, Vx € R*, |¢q (x)‘ = ‘apgogp)(aa:)‘

! pl

e 1pt: W e N, Jof[¢f ()] <ot x i = i

On considére une suite réelle (a,)nen et on lui associe la suite de fonctions (uy, )pen définies sur R par :

Vn €N, Vo € R, u,(z) @n T

n , Vo Un(T) = ———=—
ro 1+ nla2 22

19. Pour tout n € N, on note «,, = vn!a,. Montrer que pour tout p € N, tout entier n > p et tout

rzeR:
n!

p
(®) () — Py ™ ok (p—k)

c1pt @) = 3 QA @@ = 3 Qown(n = 1) (- k4 el )

P _
L 0Ptz an Y ()i el )

20. En déduire que pour tout n € N et tout p € [0,7 — 1] : u,® (0) = 0, et déterminer u,(ln)(()).

« 1 pt:caspe[0,n—1] alors uﬁlp)(O) =0

« 1 pt:sip=n,leterme de la somme correspondant & k = p = n est nly,, (x) = n!
quand x = 0. De plus, les autres termes s’annulent en 0

21. Montrer que pour tout entier n € N*, tout entier p € [0,n — 1] et tout réel = :

e

'TL
Nl

(p—Fk)

P
e 1pt s [l )] < X () glel Haal [l @)
—k k —k)!
o 1 pt:ay- (ngpn )(-%') = %’aﬂ (Pt()épn )(m) X ﬁ\x(ﬁ’*kll
n—p—1 p n—p—1 p | n—p—1 n
-« lpt: ‘u%p)(x)‘ S Ix‘m kz (Z) (nn'k)'(pi k)= = n! kzo %(nﬁ'k)' < lxl\/?? p!];() #lk)'
+oo
22. En déduire que la fonction U = ) wu, est bien définie et indéfiniment dérivable sur R.
n=0

n n—p—1
c1pt:Vnzp+1, 0< ul? oo s < %
.
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pl2ntlq|n—P

1
(n+1)H2 2al (p)
2T Var n_}—>+oo 0 < 1 donc par d’Alembert, > [jun’ |, a5 cOnverge

(n))Z

« 1 pt:

+oo
e 1 pt:lasomme > wu, est de classe €7 sur R pour tout p € N, donc de classe €
n=p+1
+o0
sur R. Il en est donc de méme de U = ) u, (on ajoute une somme finie de fonctions
n=0
de classe )
p—1
23. Montrer que U(0) = ag et que pour tout entier p > 1: U®)(0) = 3 ugp)(O) +pl ap.
n=0
+o0
e 1 pt:U(0)= > un(0) =up(0) =an
n=0
= 2B ) = 5 @) #) (0) = 'S~ @)
e 1pt:UP0)= 3 w(0)= > w’(0) =3 w!(0) +u(0) = 3w’ (0) + pla,
n=0 n=0 n=0 n=0

24. Déduire de ce qui précede que pour toute suite réelle (b,)pen, il existe une fonction f indéfiniment
dérivable sur R telle que pour tout p € N, on ait : f®)(0) = bp.

bo = ao,
by u6(0) + 1laq,
by = uj(0)+ uf(0) + 2lag,

« 1 pt : on cherche (a,) telle que

p—1

WwEN\{} b = ¥ ) (0) + play,
1 )
ap = b, ap = o bp— > un(0) ),
« 1pt: ay = ap, puis : Vp € N\{0}, -
Ve € R, up(z) = agpa,(T), o = VP,

Ve e R, up(r) = aprPpq,(z).

Ce résultat est appelé théoréme de Borel. Il a été démontré par Peano et Borel & la fin du X1x® siécle.

PROBLEME 2
File d’attente

Toutes les variables aléatoires sont définies sur un méme espace probabilisé (Q, A, P).

On s’intéresse a une file d’attente a un guichet. A Iinstant 0, la file contient un client. On suppose
qu’a chaque instant £ € N* il peut arriver au plus un nouveau client dans la file.

Pour tout k£ € N*, on note X la variable aléatoire qui vaut 1 si un nouveau client arrive a l'instant
k et 0 sinon.

On suppose que (X)ren= est une suite de variables aléatoires indépendantes et identiquement dis-
tribuées selon une loi de Bernoulli de paramétre p € 10, 1].

On repére chaque client par un indice qui donne son ordre d’arrivée dans la file : par définition, le
client initialement présent a pour indice n = 0, le premier nouvellement arrivé a pour indice n = 1,
etc.

On rappelle que la fonction génératrice d’une variable aléatoire X & valeurs dans N est la fonction
Gx définie par :

Gx(t) = ip({x =j}) ¥
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Partie I - Temps d’arrivée du n
25.
26.
217.

28.
29.

30.

éme

client

On note 77 la variable aléatoire égale au temps écoulé entre le temps 0 et le temps arrive le client
d’indice 1.

Justifier que pour tout k € N*, IP’( {Th = k}) = (1-pk1p.

On note A ’événement « aucun nouveau client n’arrive dans la file ».

Exprimer A en fonction des événements {T7 = k}, k € N*. En déduire P(A). Interpréter.
Déterminer le rayon de convergence R de la fonction génératrice de 17 puis calculer sa somme.

En déduire 'espérance et la variance de T7.

Pour tout n € N*, on note T, la variable aléatoire égale au temps écoulé entre I’arrivée du client
d’indice n — 1 et le client d’indice n. On admet que les variables aléatoires T;, sont indépendantes
et de méme loi.

On note D, =11 + ...+ T}, la variable aléatoire qui donne le temps d’arrivée du client d’indice n.
Calculer I'espérance, la variance et la fonction génératrice Gp, de D,,.

Rappeler le développement en série entiére de (1 + x)® au voisinage de z = 0 pour a € R.
En déduire le développement en série entiére de Gp, en 0 et montrer que pour tout (k,n) € (N* )2 :

0 sik<n

P({Dn=k}) = (k—l

f ) p" (1 —p)k="  sinon
—-n

Partie II - Etude du comportement de la file

I1.1 - Une suite récurrente

31.
32.

33.

34.

35.

R — R

Soienta>06tf:{ RN eXp(a(:E—l))

On s’intéresse au comportement de la suite (z,)nen+ définie par :
z1 €10,1] et VneN* z,41 = f(zn)

Montrer que pour tout n € N* z,, € |0, 1] et 2,41 — 2, est du méme signe que zo — 27.
En déduire que (z,)pen+ converge vers une limite £ € [0, 1] vérifiant f(£) = £.
0,1 — R
x = In(z)—a(x—1) "
Montrer que pour tout x > 0,ona: 0< ¢¥(x) & f(x)<zet(x)=0 < f(z)==x.

Soit la fonction ¥ :: { ]

On suppose dans cette question que a < 1.

Etudier le signe de ¥ et montrer qu’elle ne s’annule qu'en z = 1. En déduire : z, —+> 1.
n—-—+0oo

On suppose dans cette question que a > 1.

Etudier le signe de 1 et montrer que I’équation f(x) = x d’inconnue z € [0, 1] admet exactement
deux solutions « et 1 avec a € |0, 1] qu’on ne cherchera pas a expliciter.

En distinguant les cas z; € ]0,a] et 21 € [«, 1], montrer que z, — .
n—+oo

I1.2 - Groupe de clients

On suppose que les clients de la file d’attente sont servis suivant leur ordre d’arrivée par un unique

serveur et que la durée de service de chaque client est une variable aléatoire qui suit la loi de Poisson
)\k‘

A

de paramétre A > 0 : pour tout k£ € N, le service a une durée k avec la probabilité e~ i
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36.

37.

38.

39.

40.

41.
42.

On rappelle qu’initialement la file contient un unique client : le client d’indice 0.

On note S la variable aléatoire égale a la durée de service de ce client. Comme a chaque instant il
arrive au plus un nouveau client, il peut arriver entre 0 et S nouveaux clients pendant le temps de

passage au guichet du client d’indice 0. Les variables S et (Xn )n e+ Sont supposées indépendantes.

On appelle « clients du premier groupe » les clients qui sont arrivés pendant que le client d’indice 0
était servi. Par récurrence, pour tout k£ > 2, on définit les clients du k®™° groupe comme étant les
clients qui sont arrivés pendant que ceux du (k — 1)®™® groupe étaient servis.

Pour tout k£ > 1, on note V;, la variable aléatoire égale au nombre de clients du £*™° groupe.

Par construction, pour n € N*, si le n®° groupe est vide, alors I'’événement {V}, = 0} est réalisé pour

tout k > n.
Quelle est la situation concréte décrite par 'événement Z = |J {V, = 0}.
neN*
Quelle est la loi du nombre N,, du clients qui sont arrivés dans la file d’attente dans 'intervalle de

temps [1,n] ?
Pour tout (n, k) € N?, calculer P({Vy =k} | {S=n}).

En déduire que V; suite une loi de Poisson dont on précisera le paramétre.

On note z, = P( {V,, =0} ). Montrer que (2,) converge et que P(Z) = lim  z,.

n—-+00
Justifier que pour tout (j,n) € N2, P({V,11 =0} | {Vi =j}) = (]P’( {V,, =0} ))J
On distinguera le cas j = 0.
Montrer que pour tout n € N*| 2,11 = exp ()\p (zn — 1) )

Déterminer, suivant les valeurs de Ap, la limite de la suite (z;,)nen+. Interpréter.




