
Mathématiques

DS6

EXERCICE 1

Soit n ∈ N∗. On considère une matrice A ∈ Mn(R) et on note : B =

(
A 2A
A 2A

)
.

Étude d’un cas particulier

Dans cette partie, on note : A =

(
2 1
1 2

)
.

1. Justifier que A est diagonalisable et donner ses valeurs propres.

2. Montrer que 0 est valeur propre de B et donner la dimension de l’espace propre associé.

3. Soit λ une valeur propre de A et soit X ∈ M2,1(R) un vecteur propre associé à λ.
Exhiber un vecteur propre de B.

4. Démontrer que la matrice B est diagonalisable.

Cas où A est diagonalisable

On suppose dans cette partie que A ∈ Mn(R) est une matrice diagonalisable qui possède n valeurs
propres distinctes.

5. En s’inspirant de l’étude précédente, démontrer que la matrice B est diagonalisable.

PROBLÈME 1

Objectifs

Dans la partie I, on considère deux exemples de fonctions indéfiniment dérivables sur R et on s’in-
terroge sur l’existence d’un développement en série entière dans un voisinage de 0 pour ces fonctions.

Dans la partie II, indépendante de la partie I, on démontre le théorème de Borel en construisant,
pour toute suite réelle (bp)p∈N, une fonction f indéfiniment dérivable sur R telle que pour tout p ∈ N,
on ait : f (p)(0) = bp.

Partie I – Deux exemples de fonctions indéfiniment dérivables

On considère la fonction f définie sur R par :

∀x ∈ R, f(x) =
∫ +∞

0
e−t(1−itx) dt

6. Montrer que la fonction f est bien définie sur R.

• 1 pt : l’application t 7→ e−t(1−itx) est continue sur R+, en tant que composition de
l’application polynomiale t 7→ −t(1 − itx), continue sur R+ et à valeurs dans C, et de
l’application exponentielle, continue sur C

• 1 pt : |e−t(1−itx)| = o
t→+∞

( 1
t2
)

• 1 pt : mise en place correcte du théorème de comparaison des intégrales généralisées
de fonctions continues positives
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Pour tout p ∈ N, on note Γp =

∫ +∞

0
tpe−t dt.

7. Pour tout p ∈ N, justifier l’existence de Γp et déterminer une relation entre Γp+1 et Γp.

• 1 pt : |tp e−t| = o
t→+∞

( 1
t2
) ou |tp e−t| = o

t→+∞
(e−

1
2

t)

• 0 pt : mise en place correcte du théorème de comparaison des intégrales généralisées
de fonctions continues positives (1 pt s’il n’a pas été mis dans la question précédente)

• 1 pt :
∫ a

0
tp+1e−t dt =

[
−tp+1e−t

]a
0
−
∫ a

0
(−e−t)(p+1)tp dt = −ap+1e−a+(p+1)

∫ a

0
e−ttp dt

• 1 pt : lim
a→+∞

ap+1e−a = 0 et Γp+1 = (p+ 1)Γp.

On met 2 points si l’IPP réalisée directement sur l’intervalle [0,+∞[ est justifiée

8. En déduire, pour tout p ∈ N, la valeur de Γp.

• 1 pt : Γp+1 = (p+ 1)Γp = . . . = (p+ 1)× . . .× 1 Γ0

• 1 pt : Γ0 =

∫ +∞

0
e−u du =

[
−e−u

]+∞
0

= 1

9. Montrer que f est indéfiniment dérivable sur R et déterminer, pour tout (x, p) ∈ R× N, f (p)(x).

• 1 pt : vx : t 7→ e−t(1−itx) et t 7→ |vx(t)| = |e−t+it2x)| = e−t est intégrable

• 3 pt :

× 1 pt : ∀p ∈ N, ∀t ∈ R+, l’application ut : x 7→ e−t(1−itx) est de classe C p sur R

× 1 pt : u(p)t (x) =
(
it2

)p e−teit2x

× 1 pt : hypothèse de domination : |u(p)t (x)| = t2pe−t et t 7→ t2pe−t est intégrable

• 0 pt : ∀p ∈ N, ∀x ∈ R, f (p)(x) =
∫ +∞

0
u
(p)
t (x) dt = ip

∫ +∞

0
t2pe−t(1−itx) dt

10. En déduire le rayon de convergence de la série entière
∑
p⩾0

f (p)(0)

p!
xp.

La fonction f est-elle développable en série entière en 0 ?

• 1 pt : ∀p ∈ N, f (p)(0)
p! = ip

p!

∫ +∞

0
t2pe−t dt =

ip

p!
Γ2p = ip

(2p)!

p!

• 1 pt :

∣∣∣∣∣f (p+1)(0)

(p+ 1)!

∣∣∣∣∣∣∣∣∣∣f (p)(0)p!

∣∣∣∣∣
= (2(p+1))!

(p+1)! × p!
(2p)! =

(2p+2)(2p+1)
p+1 ∼

p→+∞
4p −→

p→+∞
+∞

• 1 pt : on en déduit R = 0 et f n’est donc pas développable en série entière en 0 (sinon,
au voisinage de 0, f serait égale à la somme de cette série entière qui diverge)

On considère la fonction g définie sur R par : ∀x ∈ R, g(x) =
+∞∑
k=0

e−k(1−ikx).

11. Montrer que g est indéfiniment dérivable sur R et déterminer, pour tout (x, p) ∈ R× N, g(p)(x).

• 0 pt : pour tout k ∈ N, on note gk : x 7→ e−k(1−ikx)

• 1 pt : la fonction gk est de classe C p et ∀x ∈ R, g(p)k (x) = (ik2)pe−keik2x

• 1 pt : pour tout p ∈ N, ∥g(p)k ∥∞ = k2pe−k et la série
∑

∥g(p)k ∥∞ converge par comparaison
à la série de Riemann d’exposant 2
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• 1 pt : g(p)(x) =
+∞∑
k=0

g
(p)
k (x) = ip

+∞∑
k=0

k2pe−keik2x

12. Montrer : ∀p ∈ N,
∣∣ g(p)(0) ∣∣ ⩾ p2p e−p.

• 1 pt :
∣∣g(p)(0)∣∣ = ∣∣∣∣ip+∞∑

k=0

k2pe−k

∣∣∣∣ = |i|p
∣∣∣∣+∞∑
k=0

k2pe−k

∣∣∣∣
• 1 pt :

∣∣g(p)(0)∣∣ = +∞∑
k=0

k2pe−k = p2pe−p +
∑+∞

k=0
k ̸=p

k2pe−k︸ ︷︷ ︸
⩾0

⩾ p2p e−p

13. En déduire le rayon de convergence de la série entière
∑
p⩾0

g(p)(0)

p!
xp.

La fonction g est-elle développable en série entière en 0 ?

• 1 pt : ap =
∣∣g(p)(0)∣∣ ⩾ p2p e−p = bb ainsi Ra ⩽ Rb

• 1 pt :

∣∣∣∣∣(p+ 1)2(p+1)e−(p+1)

(p+ 1)!

∣∣∣∣∣∣∣∣∣p2pe−p

p!

∣∣∣∣ =
(
1 + 1

p

)2p
(p+ 1)e−1 ⩾ pe−1 −→

p→+∞
+∞ donc Ra ⩽ Rb = 0

• 1 pt : g n’est donc pas développable en série entière en 0 (sinon, au voisinage de 0, g
serait égale à la somme de cette série entière qui diverge)

Partie II – Le théorème de Borel

14. Déterminer deux nombres complexes a et b tels que pour tout x ∈ R :

1

1 + x2
=

a

x− i
+

b

x+ i

• 1 pt : a = 1
2i et b = − 1

2i

15. On considère la fonction ψ définie sur R par : ∀x ∈ R, ψ(x) =
1

x− i
.

Montrer par récurrence : ∀p ∈ N,∀x ∈ R, ψ(p)(x) =
(−1)p p!

(x− i)p+1
.

• 1 pt : ψ est de classe C∞ sur R, en tant qu’inverse d’une application polynomiale qui
ne s’annule pas sur R

• 1 pt : intialisation

• 1 pt : hérédité ψ(p+1)(x) =
(
ψ(p)

)′
(x) = (−1)pp!×

(
− p+1

(x−i)p+2

)
= (−1)p+1(p+ 1)!× 1

(x−i)p+1+1

16. Déterminer, pour tout p ∈ N, la dérivée pème de la fonction φ1 définie sur R par :

∀x ∈ R, φ1(x) =
1

1 + x2

• 1 pt : de même, ∀p ∈ N, la dérivée p-ième de x 7→ 1

x+ i
est x 7→ (−1)pp!

(x+ i)p+1

• 1 pt : ∀x ∈ R, φ(p)
1 (x) = (−1)pp!

2i

(
1

(x−i)p+1 − 1
(x+i)p+1

)
= (−1)pp!

2i × (x+i)p+1−(x−i)p+1

(x2+1)p+1

17. Montrer : ∀p ∈ N,∀x ∈ R,
∣∣ (x+ i)p+1 − (x− i)p−1

∣∣ ⩽ 2 (1 + x2)
p+1
2 .

En déduire : ∀p ∈ N,∀x ∈ R∗,
∣∣∣φ(p)

1 (x)
∣∣∣ ⩽ p!

|x|p+1
.
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• 1 pt : |(x+i)p+1−(x−i)p−1| =
∣∣2iIm (

(x+ i)p+1
)∣∣ ⩽ 2

∣∣(x+ i)p+1
∣∣ = 2|x+i|p+1 = 2

(√
x2 + 1

)p+1

• 1 pt :
∣∣∣φ(p)

1 (x)
∣∣∣ = p!

2 × |(x+i)p+1−(x−i)p+1|
(x2+1)p+1 = p!× (x2+1)

p+1
2

(x2+1)p+1 = p!

(x2+1)
p+1
2

• 1 pt : p!

(x2+1)
p+1
2

⩽ p!

(x2)
p+1
2

= p!
|x|p+1

18. Pour tout réel α, notons φα la fonction définie sur R par :

∀x ∈ R, φα(x) =
1

1 + α2 x2

Montrer : ∀p ∈ N,∀x ∈ R∗, |α| ×
∣∣∣φ(p)

α (x)
∣∣∣ ⩽ p!

|x|p+1
.

• 1 pt : cas α = 0

• 1 pt : φα(x) = φ1(αx) donc ∀α ∈ R, ∀p ∈ N, ∀x ∈ R∗,
∣∣∣φ(p)

α (x)
∣∣∣ = ∣∣∣αpφ

(p)
1 (αx)

∣∣∣
• 1 pt : ∀p ∈ N, |α|

∣∣∣φ(p)
α (x)

∣∣∣ ⩽ |α|p+1 × p!
|αx|p+1 = p!

|x|p+1 ,

On considère une suite réelle (an)n∈N et on lui associe la suite de fonctions (un)n∈N définies sur R par :

∀n ∈ N, ∀x ∈ R, un(x) =
an x

n

1 + n! a2n x
2

19. Pour tout n ∈ N, on note αn =
√
n! an. Montrer que pour tout p ∈ N, tout entier n ⩾ p et tout

x ∈ R :

u(p)n (x) = an
p∑

k=0

(
p

k

)
n!

(n− k)!
xn−k φ(p−k)

αn
(x)

• 1 pt : u(p)n (x) =
p∑

k=0

(
p
k

)
f
(k)
n (x)φ

(p−k)
αn (x) =

p∑
k=0

(
p
k

)
ann(n− 1) · · · (n− k + 1)xn−kφ

(p−k)
αn (x)

• 0 pt : an
p∑

k=0

(
p
k

)
n!

(n−k)!x
n−kφ

(p−k)
αn (x)

20. En déduire que pour tout n ∈ N et tout p ∈ J0, n− 1K : un(p)(0) = 0, et déterminer u(n)n (0).

• 1 pt : cas p ∈ J0, n− 1K alors u(p)n (0) = 0

• 1 pt : si p = n, le terme de la somme correspondant à k = p = n est n!φαn(x) = n!
quand x = 0. De plus, les autres termes s’annulent en 0

21. Montrer que pour tout entier n ∈ N∗, tout entier p ∈ J0, n− 1K et tout réel x :∣∣∣u(p)n (x)
∣∣∣ ⩽ |x|n−p−1

√
n!

p! 2n

• 1 pt :
∣∣∣u(p)n (x)

∣∣∣ ⩽ p∑
k=0

(
p
k

)
n!

(n−k)! |x|
n−k|an| ·

∣∣∣φ(p−k)
αn (x)

∣∣∣
• 1 pt : |an| ·

∣∣∣φ(p−k)
αn (x)

∣∣∣ = 1√
n!
|αn| ·

∣∣∣φ(p−k)
αn (x)

∣∣∣ ⩽ 1√
n!

(p−k)!
|x|p−k+1

• 1 pt :
∣∣∣u(p)n (x)

∣∣∣ ⩽ |x|n−p−1
√
n!

p∑
k=0

(
p
k

)
n!

(n−k)!(p− k)! = |x|n−p−1
√
n!

p∑
k=0

p!
k!

n!
(n−k)! ⩽

|x|n−p−1
√
n!

p!
n∑

k=0

n!
k!(n−k)!

22. En déduire que la fonction U =
+∞∑
n=0

un est bien définie et indéfiniment dérivable sur R.

• 1 pt : ∀n ⩾ p+ 1, 0 ⩽ ∥u(p)n ∥∞,[a,b] ⩽
p!2n|a|n−p−1

(n!)
1
2
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• 1 pt :

p!2n+1|a|n−p

((n+1)!)
1
2

p!2n|a|n−p−1

(n!)
1
2

= 2|a|√
n+1

−→
n→+∞

0 < 1 donc par d’Alembert,
∑

∥u(p)n ∥∞,[a,b] converge

• 1 pt : la somme
+∞∑

n=p+1
un est de classe C p sur R pour tout p ∈ N, donc de classe C∞

sur R. Il en est donc de même de U =
+∞∑
n=0

un (on ajoute une somme finie de fonctions

de classe C∞)

23. Montrer que U(0) = a0 et que pour tout entier p ⩾ 1 : U (p)(0) =
p−1∑
n=0

u
(p)
n (0) + p! ap.

• 1 pt : U(0) =
+∞∑
n=0

un(0) = u0(0) = an

• 1 pt : U (p)(0) =
+∞∑
n=0

u
(p)
n (0) =

p∑
n=0

u
(p)
n (0) =

p−1∑
n=0

u
(p)
n (0) + u

(p)
p (0) =

p−1∑
n=0

u
(p)
n (0) + p!ap

24. Déduire de ce qui précède que pour toute suite réelle (bp)p∈N, il existe une fonction f indéfiniment
dérivable sur R telle que pour tout p ∈ N, on ait : f (p)(0) = bp.

• 1 pt : on cherche (an) telle que



b0 = a0,
b1 = u′0(0) + 1!a1,
b2 = u′′0(0) + u′′1(0) + 2!a2,

...

∀p ∈ N \ {0}, bp =
p−1∑
n=0

u
(p)
n (0) + p!ap

• 1 pt :


a0 = b0,
α0 = a0,

∀x ∈ R, u0(x) = a0φα0(x),
puis : ∀p ∈ N\{0},


ap =

1

p!

(
bp −

p−1∑
n=0

u
(p)
n (0)

)
,

αp =
√
p!ap,

∀x ∈ R, up(x) = apx
pφαp(x).

Ce résultat est appelé théorème de Borel. Il a été démontré par Peano et Borel à la fin du xixe siècle.

PROBLÈME 2

File d’attente

Toutes les variables aléatoires sont définies sur un même espace probabilisé
(
Ω,A ,P

)
.

On s’intéresse à une file d’attente à un guichet. À l’instant 0, la file contient un client. On suppose
qu’à chaque instant k ∈ N∗ il peut arriver au plus un nouveau client dans la file.
Pour tout k ∈ N∗, on note Xk la variable aléatoire qui vaut 1 si un nouveau client arrive à l’instant
k et 0 sinon.
On suppose que (Xk)k∈N∗ est une suite de variables aléatoires indépendantes et identiquement dis-
tribuées selon une loi de Bernoulli de paramètre p ∈ ]0, 1[.
On repère chaque client par un indice qui donne son ordre d’arrivée dans la file : par définition, le
client initialement présent a pour indice n = 0, le premier nouvellement arrivé à pour indice n = 1,
etc.
On rappelle que la fonction génératrice d’une variable aléatoire X à valeurs dans N est la fonction
GX définie par :

GX(t) =
+∞∑
j=0

P
(
{X = j}

)
tj
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Partie I - Temps d’arrivée du nème client

25. On note T1 la variable aléatoire égale au temps écoulé entre le temps 0 et le temps arrive le client
d’indice 1.
Justifier que pour tout k ∈ N∗, P

(
{T1 = k}

)
= (1− p)k−1 p.

26. On note A l’événement « aucun nouveau client n’arrive dans la file ».
Exprimer A en fonction des événements {T1 = k}, k ∈ N∗. En déduire P(A). Interpréter.

27. Déterminer le rayon de convergence R de la fonction génératrice de T1 puis calculer sa somme.

28. En déduire l’espérance et la variance de T1.

29. Pour tout n ∈ N∗, on note Tn la variable aléatoire égale au temps écoulé entre l’arrivée du client
d’indice n − 1 et le client d’indice n. On admet que les variables aléatoires Tn sont indépendantes
et de même loi.
On note Dn = T1 + . . .+ Tn la variable aléatoire qui donne le temps d’arrivée du client d’indice n.
Calculer l’espérance, la variance et la fonction génératrice GDn de Dn.

30. Rappeler le développement en série entière de (1 + x)α au voisinage de x = 0 pour α ∈ R.
En déduire le développement en série entière de GDn en 0 et montrer que pour tout (k, n) ∈

(
N∗ )2 :

P
(
{Dn = k}

)
=


0 si k < n(

k − 1

k − n

)
pn (1− p)k−n sinon

Partie II - Étude du comportement de la file

II.1 - Une suite récurrente

Soient a > 0 et f :

{
R → R
x 7→ exp

(
a (x− 1)

)
On s’intéresse au comportement de la suite (zn)n∈N∗ définie par :

z1 ∈ ]0, 1[ et ∀n ∈ N∗, zn+1 = f(zn)

31. Montrer que pour tout n ∈ N∗, zn ∈ ]0, 1[ et zn+1 − zn est du même signe que z2 − z1.

32. En déduire que (zn)n∈N∗ converge vers une limite ℓ ∈ [0, 1] vérifiant f(ℓ) = ℓ.

33. Soit la fonction ψ ::

{
]0, 1] → R

x 7→ ln(x)− a (x− 1)
.

Montrer que pour tout x > 0, on a : 0 ⩽ ψ(x) ⇔ f(x) ⩽ x et ψ(x) = 0 ⇔ f(x) = x.

34. On suppose dans cette question que a ⩽ 1.
Étudier le signe de ψ et montrer qu’elle ne s’annule qu’en x = 1. En déduire : zn −→

n→+∞
1.

35. On suppose dans cette question que a > 1.
Étudier le signe de ψ et montrer que l’équation f(x) = x d’inconnue x ∈ [0, 1] admet exactement
deux solutions α et 1 avec α ∈ ]0, 1[ qu’on ne cherchera pas à expliciter.
En distinguant les cas z1 ∈ ]0, α] et z1 ∈ [α, 1[, montrer que zn −→

n→+∞
α.

II.2 - Groupe de clients

On suppose que les clients de la file d’attente sont servis suivant leur ordre d’arrivée par un unique
serveur et que la durée de service de chaque client est une variable aléatoire qui suit la loi de Poisson

de paramètre λ > 0 : pour tout k ∈ N, le service a une durée k avec la probabilité e−λ λk

k!
.
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On rappelle qu’initialement la file contient un unique client : le client d’indice 0.

On note S la variable aléatoire égale à la durée de service de ce client. Comme à chaque instant il
arrive au plus un nouveau client, il peut arriver entre 0 et S nouveaux clients pendant le temps de
passage au guichet du client d’indice 0. Les variables S et

(
Xn

)
n∈N∗ sont supposées indépendantes.

On appelle « clients du premier groupe » les clients qui sont arrivés pendant que le client d’indice 0
était servi. Par récurrence, pour tout k ⩾ 2, on définit les clients du kème groupe comme étant les
clients qui sont arrivés pendant que ceux du (k − 1)ème groupe étaient servis.

Pour tout k ⩾ 1, on note Vk la variable aléatoire égale au nombre de clients du kème groupe.

Par construction, pour n ∈ N∗, si le nème groupe est vide, alors l’événement {Vk = 0} est réalisé pour
tout k ⩾ n.

36. Quelle est la situation concrète décrite par l’événement Z =
⋃

n∈N∗
{Vn = 0}.

37. Quelle est la loi du nombre Nn du clients qui sont arrivés dans la file d’attente dans l’intervalle de
temps J1, nK ?

38. Pour tout (n, k) ∈ N2, calculer P
(
{V1 = k} | {S = n}

)
.

En déduire que V1 suite une loi de Poisson dont on précisera le paramètre.

39. On note zn = P
(
{Vn = 0}

)
. Montrer que (zn) converge et que P(Z) = lim

n→+∞
zn.

40. Justifier que pour tout (j, n) ∈ N2, P
(
{Vn+1 = 0} | {V1 = j}

)
=

(
P
(
{Vn = 0}

) )j
.

On distinguera le cas j = 0.

41. Montrer que pour tout n ∈ N∗, zn+1 = exp
(
λ p (zn − 1)

)
.

42. Déterminer, suivant les valeurs de λ p, la limite de la suite (zn)n∈N∗ . Interpréter.
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