DS2 (version B)

I. Exercice 1

Partie I : Un endomorphisme de l'espace vectoriel des matrices carrées d'ordre 2

- On note $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 2.
- On note : $A = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $H = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- On note S_2 l'ensemble des matrices carrées symétriques d'ordre 2.
- 1. Calculer AFA, AGA, AHA.
- 2. Montrer que S_2 est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ et que (F, G, H) est une base de S_2 . Déterminer la dimension de S_2 .

On note u l'application qui, à chaque matrice S de S_2 , associe la matrice u(S) = ASA.

- 3. a) Montrer: $\forall S \in \mathcal{S}_2, \ u(S) \in \mathcal{S}_2$.
 - b) Montrer que u est un endomorphisme de l'espace vectoriel S_2 .
 - c) Donner la matrice de u dans la base (F, G, H) de S_2 .

Partie 2 : Réduction d'une matrice carrée d'ordre 3

On note :
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $M = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 4 & 6 \\ 4 & 12 & 9 \end{pmatrix}$, $D = \begin{pmatrix} -4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix}$

- 4. Vérifier que -4, 1, 16 sont valeurs propres de M et déterminer, pour chacune de celles-ci, une base du sous-espace propre associé. Est-ce que M est diagonalisable?
- 5. Déterminer une matrice P carrée d'ordre 3, inversible, de première ligne égale à $\begin{pmatrix} 4 & 4 & 1 \end{pmatrix}$, telle que $M = PDP^{-1}$.
- 6. Vérifier que (D+4I)(D-I)(D-16I) est la matrice nulle.
- 7. En déduire : $M^3 = 13M^2 + 52M 64I$.
- 8. Établir : $u^3 = 13u^2 + 52u 64e$, où e désigne l'application indentité de S_2 et où u a été définie dans la **Partie I**.

II. Exercice 2

Pour tout
$$n \in \mathbb{N}^*$$
, on note $H_n = \sum_{k=1}^n \frac{1}{k}$, $a_n = H_n - \ln(n)$ et $u_n = \prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}}\right)$.

- 1. Montrer: $\forall n \in \mathbb{N}^*, u_n > 0$.
- **2.** a) Démontrer : $a_{n+1} a_n \sim_{n \to +\infty} \frac{1}{n^2}$.
 - b) En déduire la nature de la série de terme général $(a_{n+1} a_n)$.
 - c) En déduire que la suite (a_n) converge.
- 3. Pour tout réel $\lambda > 0$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^k}{k^{\lambda}}$.
 - a) Montrer que les suites (S_{2n}) et (S_{2n+1}) sont monotones.
 - b) En déduire que la suite (S_n) converge.
- **4.** Dans la suite, pour tout $n \in \mathbb{N}^*$, on note : $w_n = \ln\left(1 + \frac{(-1)^{n-1}}{\sqrt{n}}\right) \frac{(-1)^{n-1}}{\sqrt{n}} + \frac{1}{2n}$.
 - a) Démontrer: $\forall n \in \mathbb{N}^*, \sum_{k=1}^n w_k = \ln(\sqrt{n} u_n) \sum_{k=1}^n \frac{(-1)^{k-1}}{\sqrt{k}} + \frac{1}{2} a_n$.
 - b) On admet qu'il existe une fonction ε , définie au voisinage de 0, de limite nulle en 0 et telle que pour tout x au voisinage de 0 on a :

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon(x)$$

- En déduire : $w_k \sim \frac{1}{k \to +\infty} \frac{1}{3} \frac{1}{k^{\frac{3}{2}}}$.
- c) En déduire que la série $\sum w_n$ converge.
- d) En isolant la quantité $\ln(u_n\sqrt{n})$ dans l'égalité 4.a), en déduire la nature de la suite (u_n) .
- 5. Dans la suite, pour tout $n \in \mathbb{N}^*$, on note : $z_n = w_n \frac{1}{2n}$.

Par ailleurs, pour tout réel $\lambda > 0$ et tout $n \in \mathbb{N}^*$, on note : $v_n = \prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{k^{\lambda}}\right)$.

- a) Démontrer : $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n z_k = \ln(v_n) \sum_{k=1}^n \frac{(-1)^{k-1}}{k^{\lambda}}$.
- **b)** Démontrer : $z_k \sim -\frac{1}{2} \frac{1}{k^{2\lambda}}$.
- c) En déduire une condition nécessaire et suffisante pour la convergence de la suite $(\ln(v_n))$. Quelle est la limite de cette suite lorsque cette condition n'est pas vérifée?
- d) En déduire que la suite (v_n) converge. Démontrer enfin que sa limite est nulle si et seulement si $\lambda \leqslant \frac{1}{2}$.

III. Exercice 3

Soit $p \in]0,1[$ et q=1-p. Soit $R \in \mathbb{N}^*.$ On dispose de R pièces de monnaie numérotées de 1 à R qui donnent chacune « pile » avec la probabilité p.

On effectue une suite de manches avec ces pièces de la manière suivante :

- × lors de la première manche, on lance chaque pièce une fois;
- \times aux manches suivantes, on ne relance que les pièces qui n'ont pas donné « pile » aux manches précédentes;
- \times on s'arrête lorsque toutes les pièces ont donné « pile ».

Pour tout $k \in [1, R]$, on note X_k le nombre total de lancers effectués avec la $k^{\text{ème}}$ pièce.

On note Y le nombre de manches effectuées.

- 1. Déterminer la loi de X_k , son espérance et sa variance.
- **2.** a) Démontrer : $Y = \max(X_1, ..., X_R)$.
 - b) En déduire la loi de Y.
- 3. a) Démontrer que, pour tout $k \in \mathbb{N}^*$:

$$\mathbb{P}([Y=k]) = \mathbb{P}([Y>k-1]) - \mathbb{P}([Y>k])$$

- **b)** En déduire : $\forall N \in \mathbb{N}^*$, $\sum_{j=1}^N j \, \mathbb{P} \big([Y=j] \big) = \sum_{j=0}^{N-1} \, \mathbb{P} \big([Y>j] \big) N \, \mathbb{P} \big([Y>N] \big)$.
- c) Soit $\alpha \in \mathbb{R}$. Rappeler le développement limité à l'ordre 1 en 0 de la fonction $x \mapsto (1+x)^{\alpha}$.
- d) En déduire que Y admet une espérance et :

$$\mathbb{E}(Y) = \sum_{k=0}^{+\infty} \mathbb{P}([Y > k])$$

4. Soit la fonction $f:[0,+\infty[\to \mathbb{R}$ définie par $f:x\mapsto 1-(1-q^x)^R$.

Établir la convergence de l'intégrale $\int_0^{+\infty} f(x) dx$ et montrer :

$$\int_0^{+\infty} f(x) \ dx = -\frac{1}{\ln(q)} \sum_{k=0}^{R-1} \frac{1}{k+1}$$

- 5. a) Démontrer : $\forall k \in \mathbb{N}^*, f(k) \leqslant \int_{k-1}^k f(x) dx \leqslant f(k-1).$
 - **b)** En déduire : $\forall N \in \mathbb{N}^*$, $\int_0^{N+1} f(x) dx \leqslant \sum_{k=0}^N f(k) \leqslant \int_0^N f(x) dx + 1$.
 - c) Établir l'encadrement :

$$-\frac{1}{\ln(q)} \sum_{k=0}^{R-1} \frac{1}{k+1} \leq \mathbb{E}(Y) \leq 1 - \frac{1}{\ln(q)} \sum_{k=0}^{R} \frac{1}{k+1}$$

En déduire un équivalent de $\mathbb{E}(Y)$ lorsque R tend vers $+\infty$.

On pourra admettre sans démonstration : $\sum_{k=0}^{R-1} \frac{1}{k+1} \sim \ln(R)$.

IV. Problème

Un mobile se déplace sur les points à coordonnées entières d'un axe d'origine O.

Au départ, le mobile est à l'origine.

Le mobile se déplace selon la règle suivante : s'il est sur le point d'abscisse k à l'instant n, alors, à l'instant (n+1) il sera sur le point d'abscisse (k+1) avec la probabilité p (0 ou sur le point d'abscisse <math>0 avec la probabilité 1 - p.

Pour tout n de \mathbb{N} , on note X_n l'abscisse de ce point à l'instant n et l'on a donc $X_0 = 0$.

On admet que, pour tout n de \mathbb{N} X_n est définie sur un espace probabilisé (Ω, \mathcal{A}, P) .

Par ailleurs, on note T l'instant auquel le mobile se trouve pour la première fois à l'origine (sans compter son positionnement au départ).

Par exemple, si les abscisses successives du mobile après son départ sont 0, 0, 1, 2, 0, 0, 1, alors on a T = 1. Si les abscisses successives sont : 1, 2, 3, 0, 0, 1, alors on a T = 4.

On admet que T est une variable aléatoire définie sur (Ω, \mathcal{A}, P) .

- 1. a) Pour tout k de \mathbb{N}^* , exprimer l'évènement [T=k] en fonction d'évènements mettant en jeu certaines des variables X_i .
 - **b)** Donner la loi de X_1 .
 - c) En déduire $\mathbb{P}([T=k])$ pour tout k de \mathbb{N}^* , puis reconnaître la loi de T.
- 2. a) Montrer par récurrence que, pour tout entier naturel $n, X_n(\Omega) = [0, n]$.
 - b) Pour tout n de \mathbb{N}^* , utiliser le système complet d'évènements $([X_{n-1} = k])_{0 \le k \le n-1}$ pour montrer que : $\mathbb{P}([X_n = 0]) = 1 p$.
- 3. a) Établir que : $\forall n \in \mathbb{N}, \ \forall k \in \{1, 2, \dots n+1\}, \ \mathbb{P}([X_{n+1} = k]) = p \ \mathbb{P}([X_n = k-1]).$
 - b) En déduire que : $\forall n \in \mathbb{N}^*$, $\forall k \in \{0, 1, 2, ..., n-1\}$, $\mathbb{P}([X_n = k]) = p^k (1-p)$. En déduire également la valeur de $\mathbb{P}([X_n = n])$. Donner une explication probabiliste de ce dernier résultat.
 - c) Vérifier que $\sum_{k=0}^{n} \mathbb{P}([X_n = k]) = 1.$
- 4. Dans cette question et dans cette question seulement, on prend $p = \frac{1}{3}$.

On rappelle que grand(1,1,'uin',0,2) renvoie au hasard un entier de $\{0,1,2\}$.

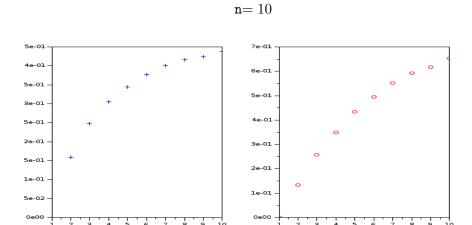
Compléter le programme suivant pour qu'il simule l'expérience aléatoire étudiée et affiche la valeur prise par X_n pour une valeur de n entrée par l'utilisateur.

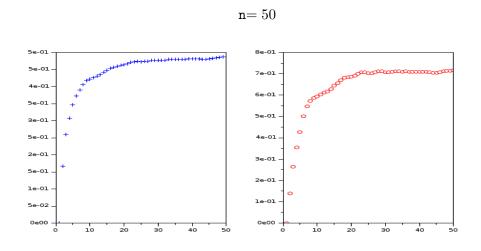
- **5.** a) Montrer que : $\forall n \ge 2$, $\sum_{k=1}^{n-1} kp^{k-1} = \frac{(n-1)p^n np^{n-1} + 1}{(1-p)^2}$.
 - **b**) En déduire que $\mathbb{E}(X_n) = \frac{p(1-p^n)}{1-p}$.
- **6.** a) Montrer, en utilisant la question 3a), que : $\forall n \in \mathbb{N}, \ \mathbb{E}\left(X_{n+1}^2\right) = p\left(\mathbb{E}\left(X_n^2\right) + 2\mathbb{E}\left(X_n\right) + 1\right)$.
 - **b)** Pour tout entier naturel n, on pose $u_n = \mathbb{E}\left(X_n^2\right) + (2n-1)\frac{p^{n+1}}{1-p}$. Montrer que $u_{n+1} = pu_n + \frac{p(1+p)}{1-p}$.
 - c) En déduire l'expression de u_n , puis celle de $\mathbb{E}(X_n^2)$ en fonction de p et n.
 - **d)** Montrer enfin que : $\mathbb{V}(X_n) = \frac{p}{(1-p)^2} (1 (2n+1)p^n (1-p) p^{2n+1}).$
- 7. Dans cette question, on prend $p = \frac{1}{3}$.
 - a) En s'inspirant du programme de la question 4., écrire en Scilab une fonction TrajectoireX prenant en paramètre un entier n et calculant en sortie un vecteur T contenant les n premières abscisses du mobile.
 - b) On considère le programme Scilab suivant :

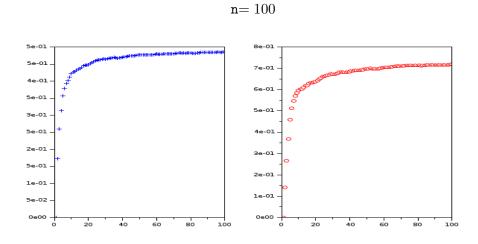
```
1  n = input('Entrez un entier n : ')
2  N = 1000
3  T = zeros(N,n)
4  for i = 1:N
5     T(i,:) = TrajectoireX(n)
6  end
7  E = zeros(1,n)
8  V = zeros(1,n)
9  for k = 1:n
10     E(k) = mean(T(:,1:k))
11     V(k) = variance(T(:,1:k))
12  end
13  subplot(1,2,1), plot(E,'+')
14  subplot(1,2,2), plot(V,'or')
```

Que représentent les vecteurs E et V?

 $\boldsymbol{c})$ Le programme précédent nous permet d'obtenir les graphiques suivants pour différentes valeurs de \mathtt{n} :







Expliquer ces graphiques à l'aide des questions 5. et 6..