DS3 (version B)

Exercice I (HEC 2002)

Le but de cet exercice est la résolution de l'équation matricielle AM=MB, d'inconnue M, dans l'espace vectoriel E des matrices carrées d'ordre 2 à coefficients réels.

On rappelle que si U_1 , U_2 , U_3 , U_4 sont les matrices définies par :

$$U_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad U_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad U_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad U_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

la famille (U_1, U_2, U_3, U_4) est une base de E, qui est donc de dimension 4. Si A et B sont deux matrices de E, l'ensemble des matrices M de E vérifiant AM = MB est noté $V_{A,B}$.

- 1. Soient A et B deux matrices de E et $\varphi_{A,B}$ l'application qui, à toute matrice M de E, associe la matrice AM-MB.
 - a) Montrer que $\varphi_{A,B}$ est un endomorphisme de E et en déduire que $V_{A,B}$ est un sous-espace vectoriel de E.

Démonstration.

D'après l'énoncé, $E=\mathscr{M}_2(\mathbb{R})$ et $\varphi_{A,B}:M\mapsto AM-MB$.

- Démontrons tout d'abord que $\varphi_{A,B}$ est à valeurs dans E. Soit $M \in E$. Alors $\varphi_{A,B}(M) = AM - MB \in E$.
- Démontrons maintenant que f est une application linéaire. Soit $(\lambda, \mu) \in \mathbb{R}^2$ et soit $(M, N) \in E^2$. Alors :

$$\varphi_{A,B}(\lambda \cdot M + \mu \cdot N) = A(\lambda \cdot M + \mu \cdot N) - (\lambda \cdot M + \mu \cdot N)B$$

$$= \lambda \cdot AM + \mu \cdot AN - \lambda \cdot MB - \mu \cdot NB$$

$$= \lambda \cdot (AM - MB) + \mu \cdot (AN - NB)$$

$$= \lambda \cdot \varphi_{A,B}(M) + \mu \cdot \varphi_{A,B}(N)$$

Ainsi, φ est un endomorphisme de E.

• Enfin:

$$V_{A,B} = \{ M \in E \mid AM - MB = 0 \}$$
$$= \{ M \in E \mid \varphi_{A,B}(M) = 0 \}$$
$$= \operatorname{Ker}(\varphi_{A,B})$$

Ainsi, $V_{A,B}$ est un espace vectoriel car c'est le noyau d'un endomorphisme.

b) Dans le cas particulier où $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$, construire la matrice carrée d'ordre 4 qui représente $\varphi_{A,B}$ dans la base (U_1, U_2, U_3, U_4) .

Montrer que cette matrice est inversible et en déduire l'ensemble $V_{A,B}$.

Démonstration.

$$\bullet \varphi_{A,B}(U_1) = AU_1 - U_1 B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix} \\
= 2 \cdot U_1 + 0 \cdot U_2 - 1 \cdot U_3 + 0 \cdot U_4$$

Ainsi :
$$\operatorname{Mat}_{(U_1, U_2, U_3, U_4)} \left(\varphi_{A,B}(U_1) \right) = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$
.

•
$$\varphi_{A,B}(U_2)$$
 = $AU_2 - U_2B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$
= $\begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$
= $-2 \cdot U_1 + 0 \cdot U_2 + 0 \cdot U_3 - 1 \cdot U_4$

Donc
$$Mat_{(U_1, U_2, U_3, U_4)} \Big(\varphi_{A,B}(U_2) \Big) = \begin{pmatrix} -2 \\ 0 \\ 0 \\ -1 \end{pmatrix}.$$

•
$$\varphi_{A,B}(U_3) = AU_3 - U_3B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix}$$

$$= -1 \cdot U_1 + 0 \cdot U_2 + 2 \cdot U_3 + 0 \cdot U_4$$

$$\operatorname{Ainsi}: \operatorname{Mat}_{(U_1,U_2,U_3,U_4)} \Big(\varphi_{A,B}(U_3) \Big) = \begin{pmatrix} -1 \\ 0 \\ 2 \\ 0 \end{pmatrix}.$$

•
$$\varphi_{A,B}(U_4) = AU_4 - U_4B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -2 & 0 \end{pmatrix}$$

$$= 0 \cdot U_1 - 1 \cdot U_2 - 2 \cdot U_3 + 0 \cdot U_4$$

Donc
$$\operatorname{Mat}_{U_1,U_2,U_3,U_4} \left(\varphi_{A,B}(U_4) \right) = \begin{pmatrix} 0 \\ -1 \\ -2 \\ 0 \end{pmatrix}.$$

On en déduit que :
$$\operatorname{Mat}_{(U_1,U_2,U_3,U_4)}(\varphi_{A,B}) = \begin{pmatrix} 2 & -2 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 2 & -2 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$
.

 \bullet Notons C cette matrice et déterminons son rang.

$$rg(C) = rg\left(\begin{pmatrix} 2 & -2 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 2 & -2 \\ 0 & -1 & 0 & 0 \end{pmatrix}\right)$$

$$\stackrel{L_1 \leftrightarrow L_3}{=} rg\left(\begin{pmatrix} -1 & 0 & 2 & -2 \\ 0 & 0 & 0 & -1 \\ 2 & -2 & -1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}\right)$$

$$\stackrel{L_3 \leftarrow L_3 + 2L_1}{=} rg\left(\begin{pmatrix} -1 & 0 & 2 & -2 \\ 0 & 0 & 0 & -1 \\ 0 & -2 & 3 & -4 \\ 0 & -1 & 0 & 0 \end{pmatrix}\right)$$

$$\stackrel{L_2 \leftrightarrow L_4}{=} rg\left(\begin{pmatrix} -1 & 0 & 2 & -2 \\ 0 & -1 & 0 & 0 \\ 0 & -2 & 3 & -4 \\ 0 & 0 & 0 & -1 \end{pmatrix}\right)$$

$$\stackrel{L_3 \leftarrow L_3 - 2L_2}{=} rg\left(\begin{pmatrix} -1 & 0 & 2 & -2 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & -1 \end{pmatrix}\right) = 4$$

• En effet, la réduite obtenue est **triangulaire** supérieure et à cœfficients diagonaux non nuls. Elle est donc inversible et de rang 4.

La matrice C, est elle-même d'ordre 4 et de rang 4. Elle est donc inversible.

• On en déduit que l'endomorphisme $\varphi_{A,B}$ est un isomorphisme. En particulier $\varphi_{A,B}$ est injective. Or : $V_{A,B} = \operatorname{Ker}(\varphi_{A,B})$.

On en déduit que $V_{A,B} = \{0_E\}$.

2. Dans cette question, r et s désignent deux réels distincts et différents de 1, et on pose :

$$D = \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix} \quad \text{et} \quad \Delta = \begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix}$$

a) Soit $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ une matrice quelconque de E. Donner des conditions nécessaires et suffisantes sur x, y, z, t pour que M appartienne à $V_{D,\Delta}$.

Démonstration.

$$M \in V_{D,\Delta} \Leftrightarrow DM - M\Delta = 0$$

$$\Leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x & y \\ rz & rt \end{pmatrix} = \begin{pmatrix} x & sy \\ z & st \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x = x \\ y = sy \\ rz = z \\ rt = st \end{cases}$$

$$\Leftrightarrow \begin{cases} (1-s) y = 0 \\ (r-1) z = 0 \\ (r-s) t = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} s = 1 & \text{OU} \quad y = 0 \\ r = s & \text{OU} \quad t = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} s = 1 & \text{OU} \quad z = 0 \\ r = s & \text{OU} \quad t = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 0 \\ z = 0 \\ t = 0 \end{cases} \qquad (car \text{ on a supposé } s \neq 1, r \neq 1 \text{ et } r \neq s)$$

$$M \in V_{D,\Delta} \Leftrightarrow y = z = t = 0$$

b) En déduire une base de $V_{D,\Delta}$.

 $D\'{e}monstration.$

• Remarquons tout d'abord que :

$$V_{D,\Delta} = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid y = z = t = 0 \right\}$$

$$= \left\{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \mid x \in \mathbb{R} \right\} = \left\{ x \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mid x \in \mathbb{R} \right\}$$

$$= \operatorname{Vect} \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right) = \operatorname{Vect} (U_1)$$

- La famille (U_1) est :
 - \times est génératrice de $V_{D,\Delta}$.
 - \times est libre car uniquement constituée d'un vecteur non nul.

Ainsi,
$$(U_1)$$
 est une base de $V_{D,\Delta}$.

3. Soit a, b, c, d des réels non nuls vérifiant $a - b \neq c - d, a - b \neq 1, c - d \neq 1, A$ et B les matrices définies par :

$$A = \begin{pmatrix} a & 1-a \\ b & 1-b \end{pmatrix}, \quad B = \begin{pmatrix} c & 1-c \\ d & 1-d \end{pmatrix}$$

a) Montrer que les valeurs propres de A sont 1 et a-b. En déduire qu'il existe une matrice inversible P de E, et une matrice D égale à celle de la question ?? pour une valeur convenable de r, telles que l'on ait : $D = P^{-1}AP$.

Démonstration.

• Démontrons que 1 est valeur propre de A.

$$\det(A - I_2) = \det\left(\begin{pmatrix} a - 1 & 1 - a \\ b & -b \end{pmatrix}\right) = -b(a - 1) - b(1 - a) = 0$$

La matrice $A - I_2$ n'est pas inversible. On en déduit que 1 est valeur propre de A.

• Démontrons que a-b est valeur propre de A.

$$\det(A - (a - b) I_2) = \det\left(\begin{pmatrix} a - (a - b) & 1 - a \\ b & (1 - b) - (a - b)\end{pmatrix}\right)$$

$$= \det\left(\begin{pmatrix} b & 1 - a \\ b & 1 - a\end{pmatrix}\right) = b(1 - a) - b(1 - a) = 0$$

La matrice A-(a-b) I_2 n'est pas inversible. On en déduit que a-b est valeur propre de A.

• Ces deux valeurs propres sont distinctes car $a - b \neq 1$. La matrice A est (carrée) d'ordre 2 et possède deux valeurs propres distinctes. Elle est donc diagonalisable.

On en déduit qu'il existe P inversible telle que : $A = PDP^{-1}$ où $D = \begin{pmatrix} 1 & 0 \\ 0 & a - b \end{pmatrix}$.

Commentaire

- L'énoncé ne demandait pas clairement de déterminer la matrice P mais simplement de démontrer son existence. Rappelons que la matrice P est constituée d'une base de vecteurs propres, ces vecteurs apparaissant dans l'ordre d'apparition des valeurs propres dans A.

• Effectuons ce calcul pour rappeler la méthode. Ici,
$$A - I_2 = \begin{pmatrix} a - 1 & 1 - a \\ b & -b \end{pmatrix}$$
. Or : $\begin{pmatrix} a - 1 & 1 - a \\ b & -b \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

(on détermine ce vecteur en remarquant que les colonnes de $A-I_2$ sont opposées)

Ainsi $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est un vecteur propre associé à la valeur propre 1.

De même,
$$A - (a - b) I_2 = \begin{pmatrix} b & 1 - a \\ b & 1 - a \end{pmatrix}$$
. Or : $\begin{pmatrix} b & 1 - a \\ b & 1 - a \end{pmatrix} \begin{pmatrix} a - 1 \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. (on détermine ce vecteur en remarquant que les colonnes de $A - (a - b) I_2$ sont colinéaires)

Ainsi $\binom{a-1}{b}$ est un vecteur propre associé à la valeur propre a-b.

Ainsi, $P = \begin{pmatrix} 1 & a-1 \\ 1 & b \end{pmatrix}$ et, à l'aide de la formule d'inversion des matrices carrées d'ordre 2 :

$$P^{-1} = \frac{1}{b - (a - 1)} \begin{pmatrix} b & 1 - a \\ -1 & 1 \end{pmatrix}$$

b) Justifier de même l'existence d'une matrice inversible Q de E, et d'une matrice Δ égale à celle de la question ?? pour une valeur convenable de s, telles que l'on ait : $\Delta = Q^{-1}BQ$.

Démonstration.

- À renommage des variables près, cette question est la même que la précédente. On en déduit que 1 et c-d sont valeurs propres de B.
- Ces deux valeurs propres sont distinctes car $c-d \neq 1$. La matrice B est (carrée) d'ordre 2 et possède deux valeurs propres distinctes. Elle est donc diagonalisable.

On en déduit qu'il existe Q inversible telle que : $B = Q\Delta Q^{-1}$ où $\Delta = \begin{pmatrix} 1 & 0 \\ 0 & c - d \end{pmatrix}$.

Commentaire

- \bullet Comme dans la question précédente, l'énoncé ne demandait pas clairement de déterminer la matrice Q mais simplement de démontrer son existence.
- Cette question étant la même que la précédente à renommage près des variables, on obtient $Q = \begin{pmatrix} 1 & c-1 \\ 1 & d \end{pmatrix}$ et $Q^{-1} = \frac{1}{d-(c-1)} \begin{pmatrix} d & 1-c \\ -1 & 1 \end{pmatrix}$.
- c) Pour toute matrice M de E, montrer qu'elle appartient à $V_{A,B}$ si et seulement si la matrice $P^{-1}MQ$ appartient à $V_{D,\Delta}$. En déduire une base de $V_{A,B}$.

Démonstration.

Soit $M \in E$.

$$M \in V_{A,B} \Leftrightarrow AM - MB = 0$$

$$\Leftrightarrow AM = MB$$

$$\Leftrightarrow PDP^{-1}M = MQ\Delta Q^{-1} \qquad (d'après les questions précédentes)$$

$$\Leftrightarrow P^{-1}(PDP^{-1}M)Q = P^{-1}(MQ\Delta Q^{-1})Q$$

$$\Leftrightarrow DP^{-1}MQ = P^{-1}MQ\Delta$$

$$\Leftrightarrow D(P^{-1}MQ) - (P^{-1}MQ)\Delta = 0$$

$$\Leftrightarrow P^{-1}MQ \in V_{D,\Delta}$$

$$\Leftrightarrow \exists \alpha \in \mathbb{R}, \ P^{-1}MQ = \alpha \cdot U_1 \qquad (car \ V_{D,\Delta} = \operatorname{Vect}(U_1))$$

$$\Leftrightarrow \exists \alpha \in \mathbb{R}, \ M = \alpha \cdot PU_1Q^{-1}$$

$$\Leftrightarrow M \in \operatorname{Vect}(PU_1Q^{-1})$$

On en déduit que $V_{A,B} = \text{Vect}(PU_1Q^{-1})$. La famille (PU_1Q^{-1}) est :

- \times génératrice de $V_{A,B}$.
- × libre car uniquement constituée d'un vecteur non nul. En effet, comme $U_1 \neq 0_E$ et que P et Q^{-1} sont inversibles, alors $PU_1Q^{-1} \neq 0_E$.

Ainsi,
$$(PU_1Q^{-1})$$
 est une base de $V_{A,B}$.

4. Dans cette question r, s et u, v désignent quatre réels vérifiant $r \neq s$, $r \neq v$, $u \neq s$, $u \neq v$, et on pose :

$$D = \begin{pmatrix} u & 0 \\ 0 & r \end{pmatrix} \quad \text{et} \quad \Delta = \begin{pmatrix} v & 0 \\ 0 & s \end{pmatrix}$$

a) Par une méthode analogue à celle de la question ??, déterminer $V_{D,\Delta}$.

 $D\'{e}monstration.$

Soit $M \in E$.

$$M \in V_{D,\Delta} \Leftrightarrow DM - M\Delta = 0$$

$$\Leftrightarrow \begin{pmatrix} u & 0 \\ 0 & r \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} v & 0 \\ 0 & s \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} ux & uy \\ rz & rt \end{pmatrix} = \begin{pmatrix} xv & sy \\ zv & st \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} ux = vx \\ uy = sy \\ rz = vz \\ rt = st \end{cases}$$

$$\Leftrightarrow \begin{cases} (u-v) & x = 0 \\ (u-s) & y = 0 \\ (r-v) & z = 0 \\ (r-s) & t = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} u = v & \text{OU} \quad x = 0 \\ u = s & \text{OU} \quad y = 0 \\ r = v & \text{OU} \quad z = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 0 \\ v \neq s, \ r \neq v, \ r \neq s \end{pmatrix}$$

On en déduit que :
$$V_{D,\Delta} = \{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid x = y = z = t = 0 \} = \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \} = \{ 0_E \}.$$

b) En déduire, par une méthode analogue à celle de la question ??, le sous-espace vectoriel $V_{A,B}$ dans le cas où A et B sont deux matrices diagonalisables n'ayant aucune valeur propre commune.

Démonstration.

• Supposons que A est diagonalisable. Alors, il existe P inversible telle que :

$$A = PDP^{-1} \quad \text{où} \quad D = \begin{pmatrix} u & 0 \\ 0 & r \end{pmatrix}$$

 $(éventuellement\ u=r)$

• Supposons que B est diagonalisable. Alors, il existe Q inversible telle que :

$$B = Q\Delta Q^{-1}$$
 où $\Delta = \begin{pmatrix} v & 0 \\ 0 & s \end{pmatrix}$

(éventuellement v = s mais d'après l'énoncé, v et s sont différents de u et r, ce qui correspond aux hypothèses de la question 3.)

• En raisonnant comme dans la question 3., on obtient :

$$M \in V_{A,B} \Leftrightarrow P^{-1}MQ \in V_{D,\Delta}$$
 $\Leftrightarrow P^{-1}MQ = 0$ $(car V_{D,\Delta} = \{0\} \ en \ appliquant \ le \ résultat \ de \ la \ question \ 3.)$ $\Leftrightarrow M = 0$

Ainsi, sous les hypothèses de l'énoncé, $V_{A,B} = \{0\}$.

Commentaire

- On a étudié dans cet exercice les solutions de l'équation matricielle AM = MB. La dimension de l'espace vectoriel des solutions peut être déterminée de manière exacte. Ce résultat est connu sous le nom de théorème de Cecioni-Frobenius (pour des matrices $M \in \mathcal{M}_n(\mathbb{R})$).
- Lorsque A=B, l'exercice consiste à chercher l'ensemble des matrices telles que : AM=MA, autrement dit l'ensemble des matrices qui commutent avec A. Cet ensemble est appelé le commutant de la matrice A.
- L'étude du commutant peut donner lieu à des sujets de concours. Dans ce cas, il faut s'attendre à des questions proches de celles développées dans cet exercice : l'étude est réalisée pour des matrices carrées d'ordre 2 ou 3 ; on commence par remarquer que le commutant de A est le noyau de l'endomorphisme $\varphi: M \mapsto AM MA$; on étudie (éventuellement) le cas particulier des matrices diagonalisables ; on étudie (éventuellement) le cas particulier des matrices nilpotentes . . .
- De manière plus générale, il est fréquent de tomber sur l'étude d'endomorphisme définie sur un espace de matrice. C'était par exemple le cas du sujet EML 2014 où l'on étudiait l'endomorphisme $\varphi: M \mapsto TMT$.

Exercice 2 (EML 2018 voie S)

Soit n un entier naturel supérieur ou égal à 2.

On note $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n, et $\mathscr{B} = (1, X, \dots, X^n)$ la base canonique de E.

On note, pour tout polynôme P de E:

$$\varphi(P) = \frac{1}{n}X(1-X)P' + XP'$$

Partie I : Étude d'un endomorphisme de polynômes

1. a) Montrer que φ est une application linéaire.

 $D\'{e}monstration.$

Soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$. Soit $(P_1, P_2) \in E^2$.

$$(\varphi(\lambda \cdot P_1 + \lambda_2 \cdot P_2))(X)$$

$$= \frac{1}{n} X(1 - X)(\lambda_1 \cdot P_1 + \lambda_2 \cdot P_2)'(X) + X(\lambda_1 \cdot P_1 + \lambda_2 \cdot P_2)(X)$$

$$= \frac{1}{n} X(1 - X)(\lambda_1 \cdot P_1'(X) + \lambda_2 \cdot P_2'(X)) + \lambda_1 \cdot X P_1(X) + \lambda_2 \cdot X P_2(X)$$

$$= \lambda_1 \cdot \left(\frac{1}{n} X(1 - X)P_1'(X) + X P_1(X)\right) + \lambda_2 \cdot \left(\frac{1}{n} X(1 - X)P_2'(X) + X P_2(X)\right)$$

$$= \lambda_1 \cdot (\varphi(P_1))(X) + \lambda_2 \cdot (\varphi(P_2))(X)$$

On en déduit que l'application φ est linéaire.

b) Calculer $\varphi(X^n)$.

Démonstration.

Pour tout $k \in [0, n]$, on note $Q_k(X) = X^k$, et donc $Q'_k(X) = kX^{k-1}$.

$$(\varphi(Q_n))(X) = \frac{1}{n} X(1-X) n X^{n-1} + X X^n$$

$$= X^n(1-X) + X^{n+1}$$

$$= X^n - X^{n+1} + X^{n+1}$$

$$= X^n = Q_n(X)$$

$$\varphi(Q_n) = Q_n$$

Commentaire

On remarque alors que le polynôme Q_n est vecteur propre de φ associé à la valeur propre 1.

(par linéarité de la

dérivation)

c) Montrer que φ est un endomorphisme de E.

Démonstration.

- On sait déjà d'après la question 1. tel que φ est une application linéaire.
- Montrons : $\forall P \in E, \varphi(P) \in E$. Soit $P \in E$. Alors il existe $(a_0, \dots, a_n) \in \mathbb{R}^{n+1}$ tel que :

$$P(X) = \sum_{k=0}^{n} a_k X^k = \sum_{k=0}^{n} a_k Q_k(X)$$

- × Comme φ est linéaire : $\varphi(P) = \varphi\left(\sum_{k=0}^n a_k \ Q_k\right) = \sum_{k=0}^n a_k \ \varphi(Q_k)$. On en déduit : $\deg\left(\varphi(P)\right) \leqslant \max\left(\deg\left(\varphi(Q_0), \dots \varphi(Q_n)\right)\right)$.
- \times Soit $k \in [0, n-1]$. Par définition :

$$(\varphi(Q_k))(X) = \frac{1}{n} X(1-X)Q_k'(X) + XQ_k(X)$$
 Ainsi : $\deg\left(\left(\varphi(Q_k)\right)(X)\right) = \deg\left(\frac{1}{n} X(1-X)Q_k'(X) + XQ_k(X)\right)$
$$\leqslant \max\left(\deg\left(\frac{1}{n} X(1-X)Q_k'(X)\right), \deg\left(XQ_k(X)\right)\right)$$

$$= \max\left(k+1,k+1\right) = k+1$$
 (on peut aussi calculer : $(\varphi(Q_k))(X) = \frac{k}{n} X^k + \frac{n-k}{n} X^{k+1}$)

On en déduit en particulier : $\forall k \in [0, n-1], \deg(\varphi(Q_k)) \leq k+1 \leq n$.

× De plus, d'après la question précédente : $\deg(\varphi(Q_n)) = n$

Finalement, on obtient : $deg(P) \leq n$. Autrement dit : $\varphi(P) \in E$.

On en déduit que φ est un endomorphisme de E.

- **2.** On pose, pour tout k de $[0, n] : P_k = X^k (1 X)^{n-k}$.
 - a) Pour tout k de [0, n], calculer $\varphi(P_k)$.

 $D\'{e}monstration.$

Soit $k \in [0, n]$.

- Tout d'abord : $P'_k(X) = kX^{k-1}(1-X)^{n-k} (n-k)X^k(1-X)^{n-k-1}$ $= X^{k-1}(1-X)^{n-k-1}(k(1-X) - (n-k)X)$ $= X^{k-1}(1-X)^{n-k-1}(k-nX)$
- On en déduit :

$$(\varphi(P_k))(X) = \frac{1}{n} X(1-X)X^{k-1}(1-X)^{n-k-1}(k-nX) + XX^k(1-X)^{n-k}$$

$$= \frac{1}{n} X^k(1-X)^{n-k}(k-nX) + XX^k(1-X)^{n-k}$$

$$= X^k(1-X)^{n-k} \left(\frac{1}{n}(k-nX) + X\right)$$

$$= X^k(1-X)^{n-k} \left(\frac{k}{n} - X + X\right) = \frac{k}{n} X^k(1-X)^{n-k} = \frac{k}{n} P_k(X)$$

$$\forall k \in [0, n], \ \varphi(P_k) = \frac{k}{n} \ P_k$$

b) Montrer que la famille (P_0, P_1, \dots, P_n) est une base de E et expliciter la matrice de φ dans cette base.

Démonstration.

D'après la question précédente, pour tout $k \in [0, n]$, P_k est vecteur propre de φ associé à la valeur propre $\frac{k}{n}$. Ainsi, la famille (P_0, P_1, \dots, P_n) est une famille de n+1 vecteurs associés à n+1 valeurs propres distinctes.

On en conclut que la famille (P_0, P_1, \ldots, P_n) est libre.

Commentaire

On peut traiter cette question même si on n'a pas réussi la question précédente.

• Montrons que la famille $\mathscr{B}' = (P_0, \dots, P_n)$ est libre. Soit $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^n$. Supposons :

$$\lambda_0 \cdot P_0 + \lambda_1 \cdot P_1 + \dots + \lambda_{n-1} \cdot P_{n-1} + \lambda_n \cdot P_n = 0_E$$

Ainsi, par définition:

$$\lambda_0 \cdot (1-X)^n + \lambda_1 \cdot X(1-X)^{n-1} + \dots + \lambda_{n-1} \cdot X^{n-1}(1-X) + \lambda_n \cdot X^n = 0_E$$

Ce qui revient à dire :

$$\forall x \in \mathbb{R}, \ \lambda_0 \ (1-x)^n + \lambda_1 \ x(1-x)^{n-1} + \dots + \lambda_{n-1} \cdot x^{n-1}(1-x) + \lambda_n \ x^n = 0 \quad (*)$$

• En appliquant l'égalité (*) en x = 1, on obtient :

$$\lambda_0 (1-1)^n + \lambda_1 1 (1-1)^{n-1} + \dots + \lambda_{n-1} 1^{n-1} (1-1) + \lambda_n 1^n = 0$$

Et on a donc : $\lambda_n = 0$. L'égalité (*) se réécrit alors :

$$\forall x \in \mathbb{R}, \ \lambda_0 \ (1-x)^n + \lambda_1 \ x(1-x)^{n-1} + \dots + \lambda_{n-1} \ x^{n-1}(1-x) = 0$$

On peut alors factoriser par (1-x):

$$\forall x \in \mathbb{R}, \ (1-x)\left(\lambda_0 \ (1-x)^{n-1} + \lambda_1 \ x(1-x)^{n-2} + \dots + \lambda_{n-1} \ x^{n-1}\right) = 0$$

Ce qui permet de conclure, en divisant par (1-x):

$$\forall x \in \mathbb{R}^*, \ \lambda_0 \ (1-x)^{n-1} + \lambda_1 \ x(1-x)^{n-2} + \dots + \lambda_{n-1} \ x^{n-1} = 0$$

Enfin, comme la fonction $P: x \mapsto \lambda_0 \ (1-x)^{n-1} + \lambda_1 \ x(1-x)^{n-2} + \cdots + \lambda_{n-1} \ x^{n-1}$ est polynomiale, elle est continue et cette égalité est aussi vérifiée en 0 (par passage à la limite, on obtient : $P(1) = \lim_{x \to 1} P(x) = 0$). Ainsi :

$$\forall x \in \mathbb{R}, \ \lambda_0 \ (1-x)^{n-1} + \lambda_1 \ x(1-x)^{n-2} + \dots + \lambda_{n-1} \ x^{n-1} = 0 \quad (**)$$

• On peut alors itérer le procédé consistant à évaluer en 1 puis mettre en facteur et diviser par (1-x). On obtient alors au bout de n étapes :

$$\lambda_n = \lambda_{n-1} = \cdots = \lambda_1 = \lambda_0 = 0$$

- On en déduit que la famille \mathcal{B}' :
 - × est libre,
 - × vérifie : $Card(\mathscr{B}') = n + 1 = \dim(\mathbb{R}_n[X]) = \dim(E)$

La famille \mathscr{B}' est donc une base de E.

• Soit $k \in [0, n]$. D'après la question 2.a:

$$\varphi(P_k) = 0 \cdot P_0 + \dots + 0 \cdot P_{k-1} + \frac{k}{n} \cdot P_k + 0 \cdot P_{k+1} + \dots + 0 \cdot P_n$$

Ainsi :
$$\operatorname{Mat}_{\mathscr{B}'}(\varphi(P_k)) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \frac{k}{n} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 (où le coefficient $\frac{k}{n}$ est en $k^{\text{\`e}me}$ position).

On en déduit :
$$\operatorname{Mat}_{\mathscr{B}'}(\varphi) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 0 & \frac{1}{n} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & \frac{n-1}{n} & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

c) Déterminer les sous-espaces propres de φ .

 $D\'{e}monstration.$

• D'après la question 2.a): $\forall k \in [0, n], \varphi(P_k) = \frac{k}{n} P_k$. Autrement dit, les polynômes P_0, P_1, \ldots, P_n sont des vecteurs propres associés aux valeurs propres $0, \frac{1}{n}, \ldots, 1$. On obtient ainsi les inclusions suivantes :

$$E_0(\varphi) \supset \operatorname{Vect}(P_0), \quad E_{\frac{1}{n}}(\varphi) \supset \operatorname{Vect}(P_1), \quad \dots \quad , \quad E_1(\varphi) \supset \operatorname{Vect}(P_n)$$

Comme $\mathrm{Mat}_{\mathscr{B}'}(\varphi)$ est diagonale, alors elle est diagonalisable. On en déduit :

$$\sum_{k=0}^n \dim \left(E_{\frac{k}{n}}(\varphi) \right) \ = \ \dim \left(\mathscr{M}_{n+1,1}(\mathbb{R}) \right) \ = \ n+1$$

ce qui permet de conclure : $\forall k \in [0, n]$, dim $\left(E_{\frac{k}{n}}(\varphi)\right) = 1$ et ainsi de démontrer que les inclusions ci-dessus sont des égalités.

On a donc :
$$\forall k \in \llbracket 0, n \rrbracket, E_{\frac{k}{n}}(\varphi) = \text{Vect}(P_k).$$

Partie II : Étude d'une suite de variables aléatoires

On considère une urne contenant n boules numérotées de 1 à n, indiscernables au toucher. On effectue dans cette urne une suite de tirages avec remise, et on suppose que l'expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

On note alors, pour tout k de \mathbb{N}^* , Y_k la variable aléatoire prenant pour valeur le nombre de numéros distincts qui ont été tirés lors des k premiers tirages.

Par convention, on pose : $Y_0 = 0$.

- 3. On note, pour tout k de \mathbb{N}^* , Z_k la variable aléatoire prenant la valeur 1 si le $k^{\text{ème}}$ tirage amène un numéro qui n'a pas été tiré lors des tirages précédents, et prenant la valeur 0 sinon. On pourra remarquer que, en particulier, $Z_1 = 1$.
 - a) Déterminer la loi de Z_2 .

Démonstration.

- En deux tirages, deux cas se présentent :
 - \times soit on obtient le même numéro aux deux tirages, c'est-à-dire $[Z_2=0]$ est réalisé,
 - \times soit on obtient deux numéros distincts sur les deux tirages, c'est-à-dire $[Z_2=1]$ est réalisé.

On en déduit :
$$Z_2(\Omega) = \{0, 1\}.$$

• Pour tout $i \in \mathbb{N}^*$, on introduit la v.a.r. T_i correspondant au numéro obtenu au $i^{\text{ème}}$ tirage. Lors du $i^{\text{ème}}$ tirage, l'expérience possède n issues différentes (on peut tirer n'importe laquelle des n boules) qui sont équiprobables.

On en déduit :
$$\forall i \in [\![1,n]\!], T_i \hookrightarrow \mathcal{U}([\![1,n]\!]).$$

Notons au passage que les v.a.r. T_i sont indépendantes car les tirages le sont.

• La famille $([T_1 = k])_{k \in [1,n]}$ forme un système complet d'événements. Ainsi, par formule des probabilités totales :

(*):l'événement $[T_1=k]\cap [Z_2=0]$ est réalisé si et seulement si :

- \times $[T_1 = k]$ est réalisé, c'est à dire qu'on a obtenu la boule numérotée k lors du 1^{er} tirage.
- \times et $[Z_2 = 0]$ est réalisé, c'est à dire que le $2^{\text{ème}}$ tirage a amené un numéro qui a déjà été tiré. On a donc obtenu, lors de ce $2^{\text{ème}}$ tirage, la même boule qu'au 1^{er} tirage à savoir la la boule numérotée k.

On en déduit :
$$[T_1 = k] \cap [Z_2 = 0] = [T_1 = k] \cap [T_2 = k]$$
.

Commentaire

Comme l'énoncé introduit des variables aléatoires pour cet exercice (plutôt que des événements), on a ici privilégié l'introduction des v.a.r. T_i . Cependant, la démonstration s'effectue également en introduisant les événements $B_{i,j}$:

$$B_{i,j} =$$
« obtenir le numéro j au $i^{\text{ème}}$ tirage »

b) Soit $k \in \mathbb{N}^*$. Calculer, pour tout j de [1, k], la valeur de $\mathbb{P}_{[Y_k = j]}([Z_{k+1} = 1])$. En déduire : $\mathbb{P}([Z_{k+1} = 1]) = 1 - \frac{1}{n}\mathbb{E}(Y_k)$.

Démonstration.

- Commençons par déterminer $Y_k(\Omega)$. Deux cas se présentent :
 - \times si $k \le n$. Dans ce cas, lors des k premiers tirages on obtient au maximum k numéros distincts.

Si
$$k < n$$
 alors $Y_k(\Omega) = [1, k]$.

 $\times \operatorname{si}_{k} \geq \underline{n}.$

Dans ce cas, lors des k premiers tirages on obtient au maximum n numéros distincts (on ne peut obtenir plus de numéros distincts que de boules présentes dans l'urne).

Si
$$k \geqslant n$$
 alors $Y_k(\Omega) = [1, n]$.

On déduit de cette étude : $Y_k(\Omega) = [1, \min(k, n)]$.

- Soit $j \in [1, k]$. Deux cas se présentent :
 - \times si $j > \min(k, n)$, alors : $[Y_k = j] = \emptyset$. (comme on a supposé $j \in [1, k]$, cela correspond au cas où $n < j \le k$)

Dans ce cas, la probabilité conditionnelle $\mathbb{P}_{[Y_k=j]}([Z_{k+1}=1])$ n'est pas définie.

Commentaire

Il est assez naturel de faire cette disjonction de cas si on a déterminé correctement l'ensemble image dans la question précédente. Au vu de l'énoncé, il semble que le concepteur n'a pas pensé à ce cas. En conséquence, ne pas faire cette disjonction n'a certainement pas été sanctionné dans le barème officiel.

 $\times \text{ si } \underline{j} \leq \min(\underline{k}, \underline{n}).$ (comme on a supposé $j \in [1, k]$, cela correspond au cas où $j \leq n$)

Si l'événement $[Y_k = j]$ est réalisé, c'est que l'on a obtenu j numéros distincts lors des k premiers tirages. Dans ce cas, l'événement $[Z_{k+1} = 1]$ est réalisé si et seulement si le $(k+1)^{\text{ème}}$ tirage amène un numéro qui n'a pas été obtenu précédemment. Autrement dit, si l'on obtenu l'une des n-j boules non encore piochées lors des k premiers tirages. Chaque boule étant piochée de manière équiprobable :

$$\mathbb{P}_{[Y_k=j]}([Z_{k+1}=1]) = \frac{n-j}{n} = 1 - \frac{j}{n}$$

$$\forall j \in [1, \min(k, n)], \mathbb{P}_{[Y_k = j]}([Z_{k+1} = 1]) = 1 - \frac{j}{n}.$$

• La famille $([Y_k = j])_{j \in [1,\min(k,n)]}$ forme un système complet d'événements (SCE). Ainsi, d'après la formule des probabilités totales :

c) Soit $k \in \mathbb{N}^*$. En remarquant que $Y_k = \sum_{j=1}^k Z_j$, montrer :

$$\mathbb{P}([Z_{k+1}=1]) = 1 - \frac{1}{n} \sum_{j=1}^{k} \mathbb{P}([Z_{j}=1])$$

Démonstration.

• Comme $Y_k = \sum_{j=1}^k Z_j$, d'après la question précédente :

$$\mathbb{P}([Z_{k+1} = 1]) = 1 - \frac{1}{n} \mathbb{E}\left(\sum_{j=1}^{k} Z_j\right)$$

$$= 1 - \frac{1}{n} \sum_{j=1}^{k} \mathbb{E}(Z_j) \qquad \begin{array}{l} (par \ lin\'{e}arit\'{e} \ de \\ l'esp\'{e}rance) \end{array}$$

• Or, par définition de l'espérance, pour tout $j \in [1, k]$:

$$\mathbb{E}(Z_j) \ = \ \underline{0} \times \mathbb{P}([Z_j = 0]) + 1 \times \mathbb{P}([Z_j = 1]) \ = \ \mathbb{P}([Z_j = 1])$$

On en déduit :
$$\mathbb{P}([Z_{k+1} = 1]) = 1 - \frac{1}{n} \sum_{j=1}^{k} \mathbb{P}([Z_j = 1]).$$

17

d) En déduire, pour tout k de \mathbb{N}^* : $\mathbb{P}([Z_k = 1]) = \left(1 - \frac{1}{n}\right)^{k-1}$.

Démonstration.

Démontrons par récurrence : $\forall k \in \mathbb{N}^*, \, \mathcal{P}(k)$ où $\mathcal{P}(k) : \mathbb{P}([Z_k = 1]) = \left(1 - \frac{1}{n}\right)^{k-1}$.

▶ Initialisation :

D'une part, Z_1 est la v.a.r. constante égale à 1. En particulier, on a donc : $\mathbb{P}([Z_1 = 1]) = 1$.

D'autre part, :
$$\left(1-\frac{1}{n}\right)^{1-1} = \left(1-\frac{1}{n}\right)^0 = 1$$
.
D'où $\mathcal{P}(1)$.

▶ Hérédité : soit $k \in \mathbb{N}^*$.

Supposons: $\forall j \in [1, k], \mathcal{P}(j)$, et démontrons $\mathcal{P}(k+1)$ (i.e. $\mathbb{P}([Z_{k+1}=1]) = \left(1 - \frac{1}{n}\right)^k$).

$$\mathbb{P}([Z_{k+1}=1]) = 1 - \frac{1}{n} \sum_{j=1}^{k} \mathbb{P}([Z_{j}=1]) \qquad (d'après la question précédente)$$

$$= 1 - \frac{1}{n} \sum_{j=1}^{k} \left(1 - \frac{1}{n}\right)^{j-1} \qquad (par hypothèses de récurrence)$$

$$= 1 - \frac{1}{n} \sum_{j=0}^{k-1} \left(1 - \frac{1}{n}\right)^{j}$$

$$= 1 - \frac{1}{n} \frac{1 - \left(1 - \frac{1}{n}\right)^{k}}{\frac{1}{n} - \left(\frac{1}{n} - \frac{1}{n}\right)^{k}} \qquad (car \ 1 - \frac{1}{n} \neq 1)$$

$$= 1 - \frac{1}{n} \frac{1 - \left(1 - \frac{1}{n}\right)^{k}}{\frac{1}{n}}$$

$$= 1 - \frac{1}{n} \frac{1 - \left(1 - \frac{1}{n}\right)^{k}}{\frac{1}{n}}$$

$$= 1 - \frac{1}{n} \frac{1 - \left(1 - \frac{1}{n}\right)^{k}}{\frac{1}{n}}$$

D'où $\mathcal{P}(k)$.

Par principe de récurrence :
$$\forall k \in \mathbb{N}^*, \mathbb{P}([Z_k = 1]) = \left(1 - \frac{1}{n}\right)^{k-1}$$
.

e) Déterminer alors, pour tout k de \mathbb{N} , l'espérance de Y_k .

Démonstration.

Soit $k \in \mathbb{N}^*$.

• On rappelle qu'on a démontré en question 3.b) :

$$\mathbb{P}([Z_{k+1} = 1]) = 1 - \frac{1}{n} \mathbb{E}(Y_k)$$
donc
$$\mathbb{P}([Z_{k+1} = 1]) - 1 = -\frac{1}{n} \mathbb{E}(Y_k)$$
d'où
$$-n(\mathbb{P}([Z_{k+1} = 1]) - 1) = \mathbb{E}(Y_k)$$

• On obtient, grâce à la question précédente :

$$\mathbb{E}(Y_k) = -n\left(\left(1 - \frac{1}{n}\right)^k - 1\right) = n\left(1 - \left(1 - \frac{1}{n}\right)^k\right)$$

- De plus, d'après l'énoncé : $Y_0=0$. Donc : $\mathbb{E}(Y_0)=0$.

$$\mathbb{E}(Y_0) = 0 \text{ et } \forall k \in \mathbb{N}^*, \ \mathbb{E}(Y_k) = n \ \left(1 - \left(1 - \frac{1}{n}\right)^k\right)$$

4. On note, pour tout k de $\mathbb{N},$ G_k le polynôme de $\mathbb{R}_n[X]$ défini par :

$$G_k = \sum_{i=0}^n \mathbb{P}([Y_k = i]) X^i$$

a) Déterminer les polynômes G_0 , G_1 et G_2 .

Démonstration.

• Par définition de G_0 :

$$G_0(X) = \sum_{i=0}^{n} \mathbb{P}([Y_0 = i]) X^i$$

Or Y_0 est la v.a.r. constante égale à 0. Donc :

$$\mathbb{P}([Y_0 = 0]) = 1$$
 et $\forall i \in \mathbb{N}^*, \ \mathbb{P}([Y_0 = i]) = 0$

On en déduit :

$$G_0(X) = \mathbb{P}([Y_0 = 0]) X^0 + \sum_{i=1}^n \mathbb{P}([Y_0 = i]) X^i = 1$$

$$G_0(X) = 1$$

• Par définition de G_1 :

$$G_1(X) = \sum_{i=0}^{n} \mathbb{P}([Y_1 = i]) X^i$$

× Déterminons la loi de Y_1 . En un seul tirage, on obtient obligatoirement un numéro (distinct). Donc $Y_1(\Omega) = \{1\}$.

La v.a.r.
$$Y_1$$
 est la v.a.r. constante égale à 1.

× En particulier :

$$\mathbb{P}([Y_1=1])=1 \quad \text{et} \quad \forall i \in \mathbb{N} \setminus \{1\}, \ \mathbb{P}([Y_1=i])=0$$

 \times On en déduit :

$$G_1(X) = \mathbb{P}([Y_1 = 0]) X^0 + \mathbb{P}([Y_1 = 1]) X^1 + \sum_{i=2}^n \mathbb{P}([Y_1 = i]) X^i = X$$

$$G_1(X) = X$$

• Par définition de G_2 :

$$G_2(X) = \sum_{i=0}^{n} \mathbb{P}([Y_2 = i]) X^i$$

 \times Déterminons la loi de Y_2 .

En deux tirages, deux cas se présentent :

- soit on obtient le même numéro aux deux tirages, c'est-à-dire $[Y_2 = 1]$ est réalisé,
- soit on obtient deux numéros distincts sur les deux tirages, c'est-à-dire $[Y_2 = 2]$ est réalisé.

On en déduit : $Y_2(\Omega) = \{1, 2\}.$

 \times L'événément $[Y_2 = 1]$ est réalisé si et seulement si un seul numéro a été tiré lors des deux premiers tirages. Autrement dit, le 2ème tirage a amené le même numéro que le premier.

$$\boxed{ \mbox{Ainsi}: [Y_2=1] \ = \ [Z_2=0]. }$$
 On en déduit, d'après la question $\emph{3.a.}$:

$$\mathbb{P}([Y_2 = 1] = \mathbb{P}([Z_2 = 0]) = \frac{1}{n}$$

Comme la famille $([Y_2 = 1], [Y_2 = 2])$ est un système complet d'événements :

$$\mathbb{P}([Y_2 = 2]) = 1 - \mathbb{P}([Y_2 = 1]) = 1 - \frac{1}{n}$$

Et donc, bien sûr:

$$\forall i \in \mathbb{N} \setminus \{1, 2\}, \ \mathbb{P}([Y_2 = i]) = 0$$

 \times Finalement:

$$G_2(X) = \mathbb{P}([Y_2 = 0]) X^0 + \mathbb{P}([Y_2 = 1]) X^1 + \mathbb{P}([Y_2 = 2]) X^2 + \sum_{i=3}^n \mathbb{P}([Y_2 = i]) X^i$$

$$= \frac{1}{n} X + \left(1 - \frac{1}{n}\right) X^2$$

$$G_2(X) = \frac{1}{n} X + \left(1 - \frac{1}{n}\right) X^2$$

b) Montrer, pour tout k de \mathbb{N} et tout i de [0, n]:

$$\mathbb{P}([Y_{k+1} = i]) = \frac{i}{n} \, \mathbb{P}([Y_k = i]) + \left(1 - \frac{i-1}{n}\right) \, \mathbb{P}([Y_k = i-1])$$

Démonstration.

Soit $k \in \mathbb{N}$.

• Traitons tout d'abord le cas k=0 qui amène à une étude particulière. En effet, rappelons que les v.a.r. Y_0 et Y_1 sont constantes :

$$Y_0 = 0$$
 et $Y_1 = 1$

Soit $i \in [0, n]$. Par définition des v.a.r. Y_0 et Y_1 :

$$\mathbb{P}([Y_0 = i]) = \begin{cases} 1 & \text{si } i = 0 \\ 0 & \text{si } i = 1 \\ 0 & \text{si } i \in [2, n] \end{cases} \quad \text{et} \quad \mathbb{P}([Y_0 = i - 1]) = \begin{cases} 0 & \text{si } i = 0 \\ 1 & \text{si } i = 1 \\ 0 & \text{si } i \in [2, n] \end{cases}$$

On en déduit :

$$\frac{i}{n} \mathbb{P}([Y_0 = i]) + \left(1 - \frac{i-1}{n}\right) \mathbb{P}([Y_0 = i-1]) = \begin{cases} \frac{0}{n} & \text{si } i = 0\\ 1 - \frac{1-1}{n} & \text{si } i = 1\\ 0 & \text{si } i \in [2, n] \end{cases}$$

et on retrouve bien la valeur de $\mathbb{P}([Y_1 = i])$ puisque :

$$\mathbb{P}([Y_1 = i]) = \begin{cases} 0 & \text{si } i = 0 \\ 1 & \text{si } i = 1 \\ 0 & \text{si } i \in [2, n] \end{cases}$$

Finalement :
$$\forall i \in [0, n], \mathbb{P}([Y_1 = i]) = \left(1 - \frac{i-1}{n}\right) \mathbb{P}([Y_0 = i - 1]) + \frac{i}{n} \mathbb{P}([Y_0 = i]).$$

• Considérons maintenant $k \in \mathbb{N}^*$ et $i \in [2, n]$.

(Les cas i=0 et i=1 sont un peu à part car amène à considérer un nombre négatif de numéros distincts puisqu'alors $i-1 \le 0$. Ces cas sont traités en fin de question.)

L'événement $[Y_{k+1} = i]$ est réalisé si et seulement si i numéros distincts ont été tirés lors des k+1 premiers tirages. Cela résulte de deux cas :

 \times soit on a obtenu *i* numéros distincts lors des *k* premiers tirages et le tirage suivant (le $(k+1)^{\text{ème}}$) a amené un numéro déjà obtenu.

Autrement dit, l'événement : $[Y_k = i] \cap [Z_{k+1} = 0]$ est réalisé.

 \times soit on a obtenu i-1 numéros distincts lors des k premiers tirages et le tirage suivant (le $(k+1)^{\text{ème}}$) a amené un nouveau numéro.

Autrement dit, l'événement : $[Y_k = i - 1] \cap [Z_{k+1} = 1]$ est réalisé.

On en déduit :
$$[Y_{k+1} = i] = ([Y_k = i] \cap [Z_{k+1} = 0]) \cup ([Y_k = i - 1] \cap [Z_{k+1} = 1]).$$

Par incompatibilité des événements :

$$\mathbb{P}([Y_{k+1} = i]) = \mathbb{P}([Y_k = i - 1] \cap [Z_{k+1} = 1]) + \mathbb{P}([Y_k = i] \cap [Z_{k+1} = 0])$$

$$= \mathbb{P}([Y_k = i - 1]) \mathbb{P}_{[Y_k = i - 1]}([Z_{k+1} = 1]) + \mathbb{P}([Y_k = i]) \mathbb{P}_{[Y_k = i]}([Z_{k+1} = 0])$$

Cette dernière égalité est valide car $\mathbb{P}([Y_k = i - 1]) \neq 0$ et $\mathbb{P}([Y_k = i]) \neq 0$ puisque $i \geq 2$.

Déterminons maintenant $\mathbb{P}_{[Y_k=i-1]}([Z_{k+1}=1])$ et $\mathbb{P}_{[Y_k=i]}([Z_{k+1}=0])$.

 \times Si l'événement $[Y_k=i-1]$ est réalisé, c'est que lors des k premiers tirages, on a tiré i-1 numéros distincts. Dans ce cas, l'événement $[Z_{k+1}=1]$ est réalisé si et seulement si on pioche l'un des n-(i-1) numéros restants.

On en déduit :
$$\mathbb{P}_{[Y_k=i-1]}([Z_{k+1}=1]) = \frac{n-(i-1)}{n} = 1 - \frac{i-1}{n}$$
.

× Si l'événement $[Y_k = i]$ est réalisé, c'est que lors des k premiers tirages, on a tiré i numéros distincts. Dans ce cas, l'événement $[Z_{k+1} = 0]$ est réalisé si et seulement si on pioche l'un de ces i numéros.

On en déduit :
$$\mathbb{P}_{[Y_k=i]}([Z_{k+1}=0]) = \frac{i}{n}$$
.

Finalement, on obtient bien:

$$\forall k \in \mathbb{N}^*, \, \forall i \in [\![2,n]\!], \, \mathbb{P}([Y_{k+1}=i]) = \left(1 - \frac{i-1}{n}\right) \, \, \mathbb{P}([Y_k=i-1]) + \frac{i}{n} \, \, \mathbb{P}([Y_k=i]).$$

Commentaire

On pouvait aussi démontrer ce résultat en utilisant la formule des probabilités totales.

La famille $([Y_k = j])_{j \in [1,n]}$ forme un système complet d'événements. Ainsi, d'après la formule des probabilités totales :

$$\begin{split} \mathbb{P}([Y_{k+1} = i]) &= \sum_{j=0}^{n} \mathbb{P}([Y_k = j] \cap [Y_{k+1} = i]) \\ &= \sum_{j=0}^{i-2} \mathbb{P}([Y_k = j] \cap [Y_{k+1} = i]) + \mathbb{P}([Y_k = i - 1] \cap [Y_{k+1} = i]) \\ &+ \mathbb{P}([Y_k = i] \cap [Y_{k+1} = i]) + \sum_{j=i+1}^{k} \mathbb{P}([Y_k = j] \cap [Y_{k+1} = i]) \end{split}$$

En effet, pour tout $j \notin \{i-1,i\} : [Y_k = j] \cap [Y_{k+1} = i] = \emptyset$. Il suffit alors de remarquer :

$$[Y_k = i - 1] \cap [Y_{k+1} = i] = [Y_k = i - 1] \cap [Z_{k+1} = 1]$$

et
$$[Y_k = i] \cap [Y_{k+1} = i] = [Y_k = i] \cap [Z_{k+1} = 0]$$

- Il reste alors à traiter les cas où $k \in \mathbb{N}^*$ et $i \in \{0, 1\}$.
 - \times Si i = 0, il suffit de remarquer :

$$[Y_{k+1} = 0] = \varnothing$$
 et $[Y_k = -1] = \varnothing$ et $[Y_k = 0] = \varnothing$

On a bien :
$$\mathbb{P}([Y_{k+1} = 0]) = 0 = \left(1 - \frac{0-1}{n}\right) \times 0 + \frac{0}{n} \times 0.$$

 \times Si i=1, on remarque, en raisonnant comme précédemment :

$$[Y_{k+1} = 1] = [Y_k = 1] \cap [Y_{k+1} = 1]$$

On en déduit :

$$\begin{split} \mathbb{P}([Y_{k+1}=1]) &= \mathbb{P}([Y_k=1] \cap [Y_{k+1}=1]) \\ &= \mathbb{P}\left([Y_k=1] \cap [Z_{k+1}=0]\right) \\ &= \mathbb{P}([Y_k=1]) \ \mathbb{P}_{[Y_k=1]} \left([Z_{k+1}=0]\right) \\ &= \mathbb{P}([Y_k=1]) \ \frac{1}{n} \qquad \qquad (en \ raisonnant \ une \ nouvelle \\ fois \ comme \ pr\'ec\'edemment) \\ &= \left(1 - \frac{1-1}{n}\right) \ \mathbb{P}([Y_k=1-1]) + \frac{1}{n} \ \mathbb{P}([Y_k=1]) \end{split}$$

$$\forall k \in \mathbb{N}^*, \ \mathbb{P}([Y_{k+1} = 1]) = \left(1 - \frac{1-1}{n}\right) \ \mathbb{P}([Y_k = 1 - 1]) + \frac{1}{n} \ \mathbb{P}([Y_k = 1])$$

c) Montrer, pour tout $k ext{ de } \mathbb{N}$:

$$G_{k+1} = \frac{1}{n} X(1-X)G'_k + XG_k$$

Démonstration.

Soit $k \in \mathbb{N}$.

• Tout d'abord :
$$G'_k(X) = \sum_{i=0}^n \mathbb{P}([Y_k = i]) i X^{i-1} = \sum_{i=1}^n i \mathbb{P}([Y_k = i]) X^{i-1}$$
.

• Ensuite, d'après la question précédente :

$$G_{k+1}(X) = \sum_{i=0}^{n} \mathbb{P}([Y_{k+1} = i]) X^{i}$$

$$= \sum_{i=0}^{n} \left(\left(1 - \frac{i-1}{n} \right) \mathbb{P}([Y_{k} = i-1]) + \frac{i}{n} \mathbb{P}([Y_{k} = i]) \right) X^{i}$$

$$= \sum_{i=0}^{n} \left(1 - \frac{i-1}{n} \right) \mathbb{P}([Y_{k} = i-1]) X^{i} + \sum_{i=0}^{n} \frac{i}{n} \mathbb{P}([Y_{k} = i]) X^{i} \quad (*)$$

• Étudions la première somme de l'égalité (*).

$$\begin{split} \sum_{i=0}^{n} \left(1 - \frac{i-1}{n}\right) \ \mathbb{P}([Y_k = i-1]) \ X^i \\ &= \sum_{i=1}^{n} \left(1 - \frac{i-1}{n}\right) \ \mathbb{P}([Y_k = i-1]) \ X^i \qquad (car \ [Y_k = -1] = \varnothing) \\ &= \sum_{i=0}^{n-1} \left(1 - \frac{i}{n}\right) \ \mathbb{P}([Y_k = i]) \ X^{i+1} \qquad (par \ d\'{e}calage \ d'indice) \\ &= \sum_{i=0}^{n-1} \mathbb{P}([Y_k = i]) \ X^{i+1} - \frac{1}{n} \sum_{i=0}^{n-1} i \ \mathbb{P}([Y_k = i]) \ X^{i+1} \\ &= X \sum_{i=0}^{n-1} \mathbb{P}([Y_k = i]) \ X^i - \frac{1}{n} \sum_{i=1}^{n-1} i \ \mathbb{P}([Y_k = i]) \ X^{i+1} \qquad (car \ 0 \ \mathbb{P}([Y_k = 0]) \ X^1 = 0) \\ &= X \left(G_k(X) - \mathbb{P}([Y_k = n]) \ X^n\right) - \frac{1}{n} \ X^2 \sum_{i=1}^{n-1} i \ \mathbb{P}([Y_k = i]) \ X^{i-1} \\ &= X \ G_k(X) - \mathbb{P}([Y_k = n]) \ X^{n+1} - \frac{1}{n} \ X^2 \ G'_k(X) - n \ \mathbb{P}([Y_k = n]) \ X^{n+1} \\ &= X \ G_k(X) - \mathbb{P}([Y_k = n]) \ X^{n+1} - \frac{1}{n} \ X^2 \ G'_k(X) + \mathbb{P}([Y_k = n]) \ X^{n+1} \\ &= X \ G_k(X) - \frac{1}{n} \ X^2 \ G'_k(X) \end{split}$$

• Étudions la seconde somme de l'égalité (*).

$$\sum_{i=0}^{n} \frac{i}{n} \mathbb{P}([Y_k = i]) X^i = \frac{1}{n} \sum_{i=1}^{n} i \mathbb{P}([Y_k = i]) X^i \quad (car \ 0 \ \mathbb{P}([Y_k = 0]) X^0 = 0)$$
$$= \frac{1}{n} X \sum_{i=1}^{n} i \mathbb{P}([Y_k = i]) X^i = \frac{1}{n} X G'_k(X)$$

En reprenant (*), on obtient :

$$G_{k+1}(X) = X G_k(X) - \frac{1}{n} X^2 G'_k(X) + \frac{1}{n} X G'_k(X) = X G_k(X) + \frac{1}{n} X (1-X) G'_k(X).$$

d) En déduire, pour tout k de \mathbb{N} : $G_k = \varphi^k(G_0)$.

Démonstration.

Démontrons par récurrence : $\forall k \in \mathbb{N}, \mathcal{P}(k)$ où $\mathcal{P}(k) : G_k = \varphi^k(G_0)$.

▶ Initialisation :

Comme $\varphi^0 = \mathrm{id}_E$, on a : $\varphi^0(G_0) = G_0$. D'où $\mathcal{P}(0)$.

▶ Hérédité : soit $k \in \mathbb{N}$.

Supposons $\mathcal{P}(k)$ et démontrons $\mathcal{P}(k+1)$ (i.e. $G_{k+1} = \varphi^{k+1}(G_0)$).

$$G_{k+1}(X) = \frac{1}{n} X(1-X) G'_k(X) + X G_k(X)$$
 (d'après la question précédente)
$$= (\varphi(G_k))(X)$$
 (par définition de φ)
$$= (\varphi(\varphi^k(G_0)))(X)$$
 (par hypothèse de récurrence)
$$= (\varphi^{k+1}(G_0))(X)$$

D'où $\mathcal{P}(k+1)$.

Par principe de récurrence :
$$\forall k \in \mathbb{N}, G_k = \varphi^k(G_0)$$
.

5. a) Pour tout k de \mathbb{N} , calculer $G_k(1)$ et $G'_k(1)$.

Démonstration.

Soit $k \in \mathbb{N}$.

• Par définition de G_k :

$$G_k(1) = \sum_{i=0}^n \mathbb{P}([Y_k = i]) \ 1^i = \sum_{i=0}^n \mathbb{P}([Y_k = i])$$

Or la famille $([Y_k = i])_{i \in [0,n]}$ est un système complet d'événements, donc : $\sum_{i=0}^{n} \mathbb{P}([Y_k = i]) = 1$

Ainsi :
$$G_k(1) = 1$$
.

• Par définition de G'_k :

$$G'_{k}(1) = \sum_{i=0}^{n} i \, \mathbb{P}([Y_{k} = i])1^{i} = \sum_{i=0}^{n} i \, \mathbb{P}([Y_{k} = i]) = \mathbb{E}(Y_{k})$$

$$G'_{k}(1) = \mathbb{E}(Y_{k}).$$

 $\textbf{\textit{b})} \ \, \text{En d\'eduire, pour tout} \, \, k \, \, \text{de} \, \, \mathbb{N} : \mathbb{E}(Y_{k+1}) = \left(1 - \frac{1}{n}\right) \, \, \mathbb{E}(Y_k) + 1.$

Démonstration.

Soit $k \in \mathbb{N}$.

- Tout d'abord, d'après la question précédente : $\mathbb{E}(Y_{k+1}) = G'_{k+1}(1)$.
- Or, d'après la question 4.c):

$$G_{k+1}(X) = \frac{1}{n} X(1-X) G'_k(X) + X G_k(X)$$

On en déduit :

$$G'_{k+1}(X) = \frac{1}{n} \Big((1-X) G'_k(X) + X \Big(-G'_k(X) + (1-X)G''_k(X) \Big) \Big) + G_k(X) + X G'_k(X)$$

$$= \frac{1}{n} (1-2X)G'_k(X) + \frac{1}{n} (1-X)G''_k(X) + G_k(X) + X G'_k(X)$$

Ainsi:

$$\mathbb{E}(Y_{k+1}) = G'_{k+1}(X)$$

$$= \frac{1}{n} (1-2)G'_k(1) + \frac{1}{n} (1-1)G''_k(1) + G_k(1) + 1 G'_k(1)$$

$$= \left(1 - \frac{1}{n}\right)G'_k(1) + G_k(1) = \left(1 - \frac{1}{n}\right)\mathbb{E}(Y_k) + 1 \qquad (d'après 5.a))$$

$$\mathbb{E}(Y_{k+1}) = \left(1 - \frac{1}{n}\right)\mathbb{E}(Y_k) + 1$$

c) Retrouver alors, pour tout k de \mathbb{N} , l'expression de $\mathbb{E}(Y_k)$ obtenue en question 6.e).

Démonstration.

• Pour tout $k \in \mathbb{N}$, on note $u_k = \mathbb{E}(Y_k)$. Alors, d'après la question précédente :

$$\forall k \in \mathbb{N}, \ u_{k+1} = \left(1 - \frac{1}{n}\right) \ u_k + 1$$

La suite $(u_k)_{k\in\mathbb{N}^*}$ est donc arithmético-géométrique.

• L'équation de point fixe associée à la suite (u_k) est :

$$x = \left(1 - \frac{1}{n}\right)x + 1$$

Elle admet pour unique solution : $\lambda = n$.

• On écrit : $u_{k+1} = \left(1 - \frac{1}{n}\right) \times u_k + 1 \quad (L_1)$ $\lambda = \left(1 - \frac{1}{n}\right) \times \lambda + 1 \quad (L_2)$

et donc
$$u_{k+1} - \lambda = \left(1 - \frac{1}{n}\right) \times \left(u_k - \lambda\right) \quad {}_{(L_1) - (L_2)}$$

Notons alors (v_k) la suite de terme général $v_k = u_k - \lambda$.

• La suite (v_k) est géométrique de raison $1 - \frac{1}{n}$. Ainsi, pour tout $k \in \mathbb{N}$:

$$v_k = \left(1 - \frac{1}{n}\right)^k \times v_0 = \left(1 - \frac{1}{n}\right)^k \times (u_0 - \lambda)$$

On a donc, pour tout $k \in \mathbb{N}$:

$$u_k = v_k + \lambda = \left(1 - \frac{1}{n}\right)^k \times (u_0 - \lambda) + \lambda$$

• Enfin: $u_0 = \mathbb{E}(Y_0) = 0$.

On en déduit :
$$\forall k \in \mathbb{N}, \ \mathbb{E}(Y_k) = -n \ \left(1 - \frac{1}{n}\right)^k + n = n \left(1 - \left(1 - \frac{1}{n}\right)^k\right).$$

6. On rappelle que les polynômes P_0, \ldots, P_n sont définis à la question 5. par :

pour tout j de
$$[0, n]$$
, $P_j = X^j (1 - X)^{n-j}$

a) Calculer $\sum_{j=0}^{n} \binom{n}{j} P_j$.

 $D\'{e}monstration.$

On calcule:

$$\sum_{j=0}^{n} \binom{n}{j} P_j(X) = \sum_{j=0}^{n} \binom{n}{j} X^j (1-X)^{n-j} \quad (par \ définition \ de \ P_j)$$

$$= \left(\mathbf{X} + (1-\mathbf{X}) \right)^n \qquad (par \ formule \ du \ binôme \ de \ Newton)$$

$$= 1$$

$$\sum_{j=0}^{n} \binom{n}{j} P_j(X) = 1$$

b) Montrer, pour tout j de [0, n]:

$$P_{j} = \sum_{i=j}^{n} {n-j \choose i-j} (-1)^{i-j} X^{i}$$

Démonstration.

On calcule:

$$\sum_{i=j}^{n} \binom{n-j}{i-j} (-1)^{i-j} X^{i} = \sum_{k=0}^{n-j} \binom{n-j}{k} (-1)^{k} X^{k+j} \qquad \text{(avec le changement d'indice } k = i-j)$$

$$= X^{j} \sum_{k=0}^{n-j} \binom{n-j}{k} (-1)^{k} X^{k}$$

$$= X^{j} \sum_{k=0}^{n-j} \binom{n-j}{k} (-X)^{k} 1^{n-j-k}$$

$$= X^{j} (-X+1)^{n-j} \qquad \text{(par formule du binôme de Newton)}$$

$$= P_{j}(X)$$

$$\sum_{i=j}^{n} {n-j \choose i-j} (-1)^{i-j} X^{i} = P_{j}(X)$$

c) En déduire, pour tout k de \mathbb{N} :

$$\varphi^k(G_0) = \sum_{i=0}^n \left(\sum_{j=0}^i \binom{n}{j} \binom{n-j}{i-j} \left(\frac{j}{n} \right)^k (-1)^{i-j} \right) X^i$$

Démonstration.

• Tout d'abord, d'après la question 6.a) :

$$G_0(X) = 1 = \sum_{j=0}^{n} \binom{n}{j} P_j(X)$$

• Soit $k \in \mathbb{N}$. Comme φ est une application linéaire, il en est de même de φ^k . Ainsi :

$$\varphi^k(G_0) = \sum_{j=0}^n \binom{n}{j} \varphi^k(P_j)$$

• De plus, d'après la question 2.a: $\forall j \in [0, n], \varphi(P_j) = \frac{j}{n} P_j$. On en déduit, par récurrence immédiate :

$$\forall j \in [0, n], \ \varphi^k(P_j) = \left(\frac{j}{n}\right)^k P_j$$

On en déduit :

$$\varphi^k(G_0) = \sum_{j=0}^n \binom{n}{j} \left(\frac{j}{n}\right)^k P_j$$

• Enfin, d'après la question précédente :

$$P_j(X) = \sum_{i=j}^{n} {n-j \choose i-j} (-1)^{i-j} X^i$$

D'où:

$$(\varphi^{k}(G_{0}))(X) = \sum_{j=0}^{n} \binom{n}{j} \left(\frac{j}{n}\right)^{k} \left(\sum_{i=j}^{n} \binom{n-j}{i-j} (-1)^{i-j} X^{i}\right)$$

$$= \sum_{0 \leq j \leq i \leq n} \left(\binom{n}{j} \binom{n-j}{i-j} \left(\frac{j}{n}\right)^{k} (-1)^{i-j} X^{i}\right)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{i} \left(\binom{n}{j} \binom{n-j}{i-j} \left(\frac{j}{n}\right)^{k} (-1)^{i-j} X^{i}\right)$$

On en déduit :
$$\forall k \in \mathbb{N}$$
, $(\varphi^k(G_0))(X) = \sum_{i=0}^n \left(\sum_{j=0}^i \binom{n}{j} \binom{n-j}{i-j} \left(\frac{j}{n}\right)^k (-1)^{i-j}\right) X^i$

d) Montrer finalement, pour tout k de \mathbb{N} et pour tout i de [0, n]:

$$\mathbb{P}([Y_k = i]) = \binom{n}{i} \sum_{j=0}^{i} \binom{i}{j} (-1)^{i-j} \left(\frac{j}{n}\right)^k$$

Démonstration.

Soit $k \in \mathbb{N}$.

• D'après la question 4.d):

$$G_k = \varphi^k(G_0)$$

$$\sum_{i=0}^n \mathbb{P}([Y_k = i]) \ X^i \qquad \sum_{i=0}^n \left(\sum_{j=0}^i \binom{n}{j} \binom{n-j}{i-j} \left(\frac{j}{n}\right)^k (-1)^{i-j}\right) X^i \quad \text{(d'après la question précédente)}$$

• Or la famille (Q_0, Q_1, \ldots, Q_n) est une base de $\mathbb{R}_n[X]$. (on rappelle : $\forall i \in [0, n], \ Q_i(X) = X^i$) Donc la décomposition du polynôme G_k sur cette base est unique. En particulier, pour tout $i \in [0, n]$:

$$\mathbb{P}([Y_k = i]) = \sum_{j=0}^{i} \binom{n}{j} \binom{n-j}{i-j} \left(\frac{j}{n}\right)^k (-1)^{i-j}$$

• Montrons alors maintenant, pour tout $(i, j) \in [0, n]$ tel que $j \leq i$:

$$\binom{n}{j}\binom{n-j}{i-j} = \binom{n}{i}\binom{i}{j}$$

× D'une part :

$$\binom{n}{j} \binom{n-j}{i-j} \ = \ \frac{n!}{j! \ (n-j)!} \ \frac{(n-j)!}{(i-j)! \ ((n-j)-(i-j))!} \ = \ \frac{n!}{j! \ (i-j)! \ (n-i)!}$$

× D'autre part :

$$\binom{i}{j} \, \binom{n}{i} \; = \; \frac{\cancel{i!}}{j! \, (i-j)!} \, \frac{n!}{\cancel{i!} \, (n-i)!} \; = \; \frac{n!}{j! \, (i-j)! \, (n-i)!}$$

Ainsi, pour tout
$$(i,j) \in [0,n]$$
 tel que $j \leq i : \binom{n}{j} \binom{n-j}{i-j} = \binom{n}{i} \binom{i}{j}$.

• On en déduit :

$$\mathbb{P}([Y_k = i]) = \sum_{j=0}^i \binom{n}{i} \binom{i}{j} \left(\frac{j}{n}\right)^k (-1)^{i-j} = \binom{n}{i} \sum_{j=0}^i \binom{i}{j} \left(\frac{j}{n}\right)^k (-1)^{i-j}$$

$$\forall k \in \mathbb{N}, \, \forall i \in \llbracket 0, n \rrbracket, \, \mathbb{P}([Y_k = i]) = \binom{n}{i} \sum_{j=0}^{i} \binom{i}{j} \left(\frac{j}{n}\right)^k (-1)^{i-j}$$

Commentaire

La relation sur les coefficients binomiaux peut aussi se faire par dénombrement.

Pour ce faire, on considère un ensemble E à n éléments.

(on peut penser à une pièce qui contient n individus)

On souhaite alors construire une partie P à i éléments de cet ensemble contenant j éléments distingués (on peut penser à choisir dans la pièce un groupe de i individus dans lequel figurent j représentants de ces individus).

Pour ce faire, on peut procéder de deux manières :

- 1) On choisit d'abord la partie à i éléments de $E:\binom{n}{i}$ possibilités.
 - On distingue ensuite j éléments de cet ensemble $P:\binom{i}{j}$ possibilités. (on choisit d'abord les i individus et on élit ensuite j représentants de ces individus) Ainsi, il y a $\binom{i}{i}$ manières de construire P.
- 2) On choisit d'abord, dans E, les j éléments à distinguer : $\binom{n}{j}$ possibilités. On choisit ensuite i-j éléments dans E, pour former P, en y ajoutant les j éléments précédents : $\binom{n-j}{i-j}$ possibilités. (on choisit d'abord les j représentants puis on leur adjoint un groupe de i-j indi-

vidus)
Ainsi, il y a $\binom{n}{j}$ $\binom{n-j}{i-j}$ manières de construire P.

On retrouve ainsi le résultat.

Exercice 3 (ESCP 2003)

Soient a et b deux entiers naturels non nuls et s leur somme.

Une urne contient initialement a boules noires et b boules blanches indiscernables au toucher.

On effectue dans cette urne une suite infinie de tirages au hasard d'une boule selon le protocole suivant :

- x si la boule tirée est blanche, elle est remise dans l'urne,
- \times si la boule tirée est noire, elle est remplacée dans l'urne par une boule blanche prise dans une réserve annexe.

Avant chaque tirage, l'urne contient donc toujours s boules.

On désigne par $(\Omega, \mathcal{B}, \mathbb{P})$ un espace probabilisé qui modélise cette expérience et, pour tout entier naturel n non nul, on note :

- $\times B_n$ l'événement « la $n^{\text{ème}}$ boule tirée est blanche » ;
- \times X_n la variable aléatoire désignant le nombre de boules blanches tirées au cours des n premiers tirages;
- $\times u_n$ l'espérance de la variable aléatoire X_n , c'est-à-dire $u_n = \mathbb{E}(X_n)$.

1. Étude d'un ensemble de suites

Soit A l'ensemble des suites $(x_n)_{n\geqslant 1}$ de réels qui vérifient :

$$\forall n \in \mathbb{N}^*, \quad s \, x_{n+1} = (s-1) \, x_n + b + n$$

a) Soit α et β deux réels et $(v_n)_{n\geqslant 1}$ la suite définie par : $\forall n\in\mathbb{N}^*,\ v_n=\alpha\,n+\beta$. Déterminer en fonction de b et de s les valeurs de α et β pour que la suite $(v_n)_{n\geqslant 1}$ appartienne à A.

Démonstration.

• Supposons que $(v_n) \in A$. Alors :

$$\forall n \in \mathbb{N}^*, \ s \, v_{n+1} = (s-1)v_n + b + n$$

Soit $n \in \mathbb{N}^*$. On obtient :

$$s v_{n+1} = (s-1)v_n + b + n$$

$$\Leftrightarrow s(\alpha(n+1) + \beta) = (s-1)(\alpha n + \beta) + n + b$$

$$\Leftrightarrow s(n+1)\alpha + s\beta = n(s-1)\alpha + (s-1)\beta + n + b$$

$$\Leftrightarrow (s(n+1) - n(s-1))\alpha + (s-(s-1))\beta = n + b$$

$$\Leftrightarrow (sn + s - ns + n)\alpha + \beta = n + b$$

$$\Leftrightarrow (s+n)\alpha + \beta = n + b$$

En particulier, pour n = 1 et n = 2, on obtient :

$$\begin{cases} (s+1)\alpha + \beta &= 1+b \\ (s+2)\alpha + \beta &= 2+b \end{cases} \xrightarrow{L_2 \leftarrow L_2 - L_1} \begin{cases} (s+1)\alpha + \beta &= 1+b \\ \alpha &= 1 \end{cases}$$

$$\stackrel{L_1 \leftarrow L_1 - (s+1)L_2}{\Longleftrightarrow} \begin{cases} \beta &= b-s \\ \alpha &= 1 \end{cases}$$

Donc: $\forall n \in \mathbb{N}^*, v_n = n + b - s.$

• Vérifions maintenant que la suite (v_n) définie par :

$$\forall n \in \mathbb{N}^*, \ v_n = n + b - s$$

appartient bien à A. Soit $n \in \mathbb{N}^*$.

× D'une part :

$$s v_{n+1} = s(n+1) + b - s = sn + s + sb - s^2$$

× D'autre part :

$$(s-1)v_n + b + n = (s-1)(n+b-s) + b + n$$

$$= sn - \varkappa + bs - \not b - s^2 + s + \not b + \varkappa$$

$$= sn + bs - s^2 + s$$

On a bien, pour tout $n \in \mathbb{N}^*$: $s v_{n+1} = (s-1)v_n + b + n$.

La suite (v_n) appartient à A si et seulement si $\alpha = 1$ et $\beta = b - s$.

b) Soit $(x_n)_{n\geqslant 1}$ une suite appartenant à A, $(v_n)_{n\geqslant 1}$ la suite déterminée à la question précédente et $(y_n)_{n\geqslant 1}$ la suite définie par : $\forall n\in\mathbb{N}^*, y_n=x_n-v_n$.

Montrer que la suite $(y_n)_{n\geqslant 1}$ est une suite géométrique et expliciter, pour tout entier naturel n non nul, y_n puis x_n en fonction de x_1 , b, s et n.

Démonstration.

• Soit $n \in \mathbb{N}^*$.

$$y_{n+1} = x_{n+1} - v_{n+1}$$

$$= \frac{1}{s} ((s-1)x_n + b + n) - \frac{1}{s} ((s-1)v_n + b + n)$$

$$= \frac{s-1}{s} (x_n - v_n)$$

$$= \frac{s-1}{s} y_n$$

La suite (y_n) est donc géométrique de raison $\frac{s-1}{s}$.

• Soit $n \in \mathbb{N}^*$. On en déduit :

$$y_n = \left(\frac{s-1}{s}\right)^{n-1} y_1$$

Or: $y_1 = x_1 - v_1 = x_1 - (1 + b - s)$.

Ainsi:
$$\forall n \in \mathbb{N}^*, y_n = \left(\frac{s-1}{s}\right)^{n-1} (x_1 - 1 - b + s).$$

• De plus :
$$\forall n \in \mathbb{N}^*$$
, $x_n = y_n + v_n$.

Finalement : $\forall n \in \mathbb{N}^*$, $x_n = \left(\frac{s-1}{s}\right)^{n-1} (x_1 - 1 - b + s) + n + b - s$.

- 2. Expression de la probabilité $\mathbb{P}(B_{n+1})$ à l'aide de u_n
 - a) Donner, en fonction de b et de s, les valeurs respectives de $\mathbb{P}(B_1)$ et du nombre u_1 .

Démonstration.

• Lors du premier tirage, on pioche parmi les s boules disponibles, dont b blanches. Chaque issue est équiprobable.

Ainsi :
$$\mathbb{P}(B_1) = \frac{b}{s}$$
.

• Tout d'abord : $X_1(\Omega) = \{0, 1\}.$

En effet, au premier tirage, seules deux issues sont possibles:

 \times on pioche une boule blanche, c'est-à-dire $[X_1 = 1]$ est réalisé,

 \times on pioche une boule noire, c'est-à-dire $[X_1=0]$ est réalisé.

De plus :
$$\mathbb{P}([X_1 = 1]) = \mathbb{P}(B_1) = \frac{b}{s}$$
.

De plus :
$$\mathbb{P}([X_1=1]) = \mathbb{P}(B_1) = \frac{b}{s}$$
.
On en déduit : $X_1 \hookrightarrow \mathcal{B}\left(\frac{b}{s}\right)$. Donc : $u_1 = \mathbb{E}(X_1) = \frac{b}{s}$.

b) Calculer la probabilité $\mathbb{P}(B_2)$ et vérifier l'égalité : $\mathbb{P}(B_2) = \frac{b+1-u_1}{s}$.

Démonstration.

La famille $(B_1, \overline{B_1})$ forme un système complet d'événements.

Ainsi, d'après la formule des probabilités totales :

$$\mathbb{P}(B_2) = \mathbb{P}(B_1 \cap B_2) + \mathbb{P}\left(\overline{B_1} \cap B_2\right)$$

$$= \mathbb{P}(B_1) \mathbb{P}_{B_1}(B_2) + \mathbb{P}\left(\overline{B_1}\right) \mathbb{P}_{\overline{B_1}}(B_2) \quad (car \ \mathbb{P}(B_1) \neq 0 \ et \ \mathbb{P}\left(\overline{B_1}\right) \neq 0)$$

Déterminons $\mathbb{P}_{B_1}(B_2)$ et $\mathbb{P}_{\overline{B_1}}(B_2)$.

• Si l'événement B_1 est réalisé, c'est qu'on a pioché une boule blanche au premier tirage. Elle est remise dans l'urne.

Dans ce cas, l'événement B_2 est réalisé si et seulement si on a pioché une boule blanche au $2^{\text{ème}}$ tirage dans l'urne contenant toujours a boules noires et b boules blanches. Ainsi :

$$\mathbb{P}_{B_1}(B_2) = \frac{b}{s}$$

• Si l'événement $\overline{B_1}$ est réalisé, c'est qu'on a pioché une boule noire au premier tirage. Elle est remplacée par une boule blanche dans l'urne.

Dans ce cas, l'événement B_2 est réalisé si et seulement si on a pioché une boule blanche au $2^{\text{ème}}$ tirage dans l'urne contenant alors a-1 boules noires et b+1 boules blanches. Ainsi :

$$\mathbb{P}_{\overline{B_1}}(B_2) = \frac{b+1}{s}$$

On obtient:

$$\mathbb{P}(B_2) = \frac{b}{s} \times \frac{b}{s} + \left(1 - \frac{b}{s}\right) \left(\frac{b+1}{s}\right)$$

$$= \frac{1}{s} \left(\frac{b^2}{s} + (b+1)\left(1 - \frac{b}{s}\right)\right)$$

$$= \frac{1}{s} \left(\frac{b^2}{s} + b - \frac{b^2}{s} + 1 - \frac{b}{s}\right) = \frac{b+1-\frac{b}{s}}{s}$$

Or
$$u_1 = \frac{b}{s}$$
 d'après la question précédente, donc : $\mathbb{P}(B_2) = \frac{b+1-u_1}{s}$.

c) Soit n un entier naturel vérifiant $1 \le n \le a$.

Montrer : $\forall k \in [0, n], \mathbb{P}_{[X_n = k]}(B_{n+1}) = \frac{b + n - k}{s}$. En déduire l'égalité : $\mathbb{P}(B_{n+1}) = \frac{b + n - u_n}{s}$.

Démonstration.

• Notons tout d'abord qu'en n tirages, on peut piocher de 0 à n boules blanches.

On en déduit :
$$X_n(\Omega) = [0, n]$$
.

• Soit $k \in [0, n]$.

Si l'événement $[X_n = k]$ est réalisé c'est qu'on a tiré k boules blanches au cours des n premiers tirages. On a donc également tiré (n - k) boules noires que l'on a toutes remplacées par des boules blanches.

Dans ce cas, l'événément B_{n+1} est réalisé si et seulement si on a tiré une boule blanche lors du $(n+1)^{\text{ème}}$ tirage dans une urne qui contient alors a-(n-k) boules noires et b+(n-k) boules blanches (ce qui est possible car $n \leq a$).

Ainsi :
$$\forall k \in [0, n], \mathbb{P}_{[X_n = k]}(B_{n+1}) = \frac{b + n - k}{s}.$$

• La famille $([X_n = k])_{k \in [0,n]}$ est un système complet d'événements. Ainsi, d'après la formule des probabilités totales :

$$\mathbb{P}(B_{n+1}) = \sum_{k=0}^{n} \mathbb{P}([X_n = k] \cap B_{n+1})$$

$$= \sum_{k=0}^{n} \mathbb{P}([X_n = k]) \mathbb{P}_{[X_n = k]}(B_{n+1}) \qquad (car \, \mathbb{P}([X_n = k]) \neq 0)$$

$$= \sum_{k=0}^{n} \mathbb{P}([X_n = k]) \frac{b+n-k}{s} \qquad (d'après \ le \ point \ précédent)$$

$$= \sum_{k=0}^{n} \frac{b+n}{s} \, \mathbb{P}([X_n = k]) - \frac{1}{s} \sum_{k=0}^{n} k \, \mathbb{P}([X_n = k])$$

$$= \frac{b+n}{s} \sum_{k=0}^{n} \mathbb{P}([X_n = k]) - \frac{1}{s} \, \mathbb{E}(X_n) \qquad (par \ définition \ de \ l'espérance)$$

$$= \frac{b+n}{s} \times 1 - \frac{1}{s} \, \mathbb{E}(X_n) \qquad (par \ définition \ de \ u_n)$$

$$= \frac{b+n-u_n}{s}$$

$$= \frac{b+n-u_n}{s}$$

$$\mathbb{P}(B_{n+1}) = \frac{b+n-u_n}{s}$$

d) Soit n un entier naturel vérifiant n > a.

Si $k \in [0, n-a-1]$, quel est l'événement $[X_n = k]$?

Si
$$k \in [n-a, n]$$
, justifier l'égalité : $\mathbb{P}_{[X_n=k]}(B_{n+1}) = \frac{b+n-k}{s}$.

Montrer enfin que l'égalité : $\mathbb{P}(B_{n+1}) = \frac{b+n-u_n}{s}$ est encore vérifiée.

Démonstration.

• Si $k \in [0, n-a-1]$, alors l'événement $[X_n = k]$ est réalisé si et seulement si on a pioché k boules blanches lors des n premiers tirages. Cela signifie que l'on a pioché n-k boules noires. Or :

$$0 \le k \le n-a-1 \Leftrightarrow 0 \ge -k \ge -n+a+1 \Leftrightarrow n \ge n-k \ge n-n+a+1$$

L'urne contient initialement a boules noires, il est donc impossible d'en pioché plus de a + 1.

On en déduit :
$$\forall k \in [0, n-a-1], [X_n = k] = \emptyset.$$

• Si $k \in [n-a, n]$.

Si l'événement $[X_n = k]$ est réalisé, alors on a tiré k boules blanches au cours des n premiers tirages. On a donc également tiré (n-k) boules noires que l'on a toutes remplacées par des boules blanches. À la fin du $n^{\text{ème}}$ tirage, l'urne contient donc a - (n - k) boules noires et b + (n - k) boules blanches. Ce qui est possible car :

$$n-a\leqslant k\leqslant n \Leftrightarrow -n+a\geqslant -k\geqslant -n \Leftrightarrow \varkappa-\varkappa+a\geqslant n-k\geqslant 0$$

On en déduit :
$$\forall k \in [n-a, n], \mathbb{P}_{[X_n=k]}(B_{n+1}) = \frac{b+n-k}{s}.$$

• Comme, pour tout $k \in [0, n-a-1]$, $[X_n = k] = \emptyset$, on en déduit : $X(\Omega) = [n-a, n]$. Donc la famille $([X_n = k])_{k \in [n-a, n]}$ forme un système complet d'événements.

Ainsi, en appliquant la formule des probabilités totales sur ce système complet d'événements et avec les mêmes arguments qu'en question précédente, on obtient :

$$\mathbb{P}(B_{n+1}) = \frac{b+n-u_n}{s}$$

- 3. Calcul des nombres u_n et $\mathbb{P}(B_n)$
 - a) Soit n un entier naturel non nul. établir, pour tout entier k de l'intervalle [n+1-a,n] l'égalité :

$$\mathbb{P}([X_{n+1} = k]) = \frac{a-n+k}{s} \mathbb{P}([X_n = k]) + \frac{b+n-k+1}{s} \mathbb{P}([X_n = k-1])$$

Vérifier cette égalité pour k = n + 1, k = n - a et pour tout $k \in [1, n - a - 1]$.

Démonstration.

• Soit $k \in [n+1-a,n]$. La famille $(B_{n+1},\overline{B_{n+1}})$ est un système complet d'événements. Ainsi, par formule des probabilités totales :

$$\mathbb{P}([X_{n+1} = k]) = \mathbb{P}([X_{n+1} = k] \cap B_{n+1}) + \mathbb{P}([X_{n+1} = k] \cap \overline{B_{n+1}})$$

- Or :
 - × tout d'abord :

$$[X_{n+1} = k] \cap B_{n+1} = [X_n = k-1] \cap B_{n+1}$$

× de plus :

$$[X_{n+1} = k] \cap \overline{B_{n+1}} = [X_n = k] \cap \overline{B_{n+1}}$$

• On en déduit :

$$\mathbb{P}([X_{n+1} = k])$$

$$= \mathbb{P}([X_n = k - 1] \cap B_{n+1}) + \mathbb{P}([X_n = k] \cap \overline{B_{n+1}})$$

$$= \mathbb{P}([X_n = k - 1]) \mathbb{P}_{[X_n = k - 1]}(B_{n+1}) + \mathbb{P}([X_n = k]) \mathbb{P}_{[X_n = k]}(\overline{B_{n+1}}) \qquad \begin{array}{l} (car \ (k - 1, k) \in (X_n(\Omega))^2 \\ avec \ X_n(\Omega) = [n - a, n]) \end{array}$$

$$= \mathbb{P}([X_n = k - 1]) \frac{b + n - k + 1}{s} + \mathbb{P}([X_n = k]) (1 - \mathbb{P}_{[X_n = k]}(B_{n+1})) \quad (d'après \ 2.d))$$

$$= \mathbb{P}([X_n = k - 1]) \frac{b + n - k + 1}{s} + \mathbb{P}([X_n = k]) \left(1 - \frac{b + n - k}{s}\right) \qquad (d'après \ 2.d))$$

$$= \frac{b+n-k+1}{s} \mathbb{P}([X_n = k-1]) + \mathbb{P}([X_n = k]) \frac{a-n+k}{s}$$
 (car a = s - b)

On en déduit, pour tout
$$k \in [\![n-a,n]\!]$$
 :

$$\mathbb{P}([X_{n+1} = k]) = \frac{b+n-k+1}{s} \, \mathbb{P}([X_n = k-1]) + \frac{a-n+k}{s} \, \mathbb{P}([X_n = k]).$$

- Cas k = n + 1.
 - × D'une part, l'événement $[X_{n+1} = n+1]$ est réalisé si et seulement si on a tiré que des boules blanches. Donc :

$$[X_{n+1} = n+1] = [X_n = n] \cap B_{n+1}$$

Donc:

$$\mathbb{P}([X_{n+1} = n+1]) = \mathbb{P}([X_n = n] \cap B_{n+1}) = \mathbb{P}([X_n = n]) \mathbb{P}_{[X_n = n]}(B_{n+1})$$

$$= \mathbb{P}([X_n = n]) \frac{b + \varkappa - \varkappa}{s} \qquad (d'après 2.d))$$

$$= \frac{b}{s} \mathbb{P}([X_n = n])$$

× D'autre part, comme $[X_n = n+1] = \emptyset$:

$$\frac{a-n+(n+1)}{s} \ \underline{\mathbb{P}([X_n=n+1])} + \frac{b+\varkappa - (\varkappa+1)+1}{s} \ \mathbb{P}([X_n=n]) \ = \ \frac{b}{s} \ \mathbb{P}([X_n=n])$$

L'égalité est toujours vérifiée pour k = n + 1.

- $\operatorname{Cas} k = n a$.
 - × D'une part, on a toujours :

$$\mathbb{P}([X_{n+1} = n - a]) = \mathbb{P}([X_n = n - a - 1] \cap B_{n+1}) + \mathbb{P}([X_n = n - a] \cap \overline{B_{n+1}})$$

Or:

$$[X_n = n - a - 1] \cap B_{n+1} = \varnothing \cap B_{n+1} = \varnothing$$

On en déduit :

$$\mathbb{P}([X_{n+1} = n - a]) = \mathbb{P}([X_n = n - a] \cap \overline{B_{n+1}})$$

$$= \mathbb{P}([X_n = n - a]) \, \mathbb{P}_{[X_n = n - a]}(\overline{B_{n+1}})$$

$$= \mathbb{P}([X_n = n - a]) \left(1 - \mathbb{P}_{[X_n = n - a]}(B_{n+1})\right)$$

$$= \mathbb{P}([X_n = n - a]) \left(1 - \frac{b + n - (n - a)}{s}\right)$$

$$= \left(1 - \frac{a + b}{s}\right) \, \mathbb{P}([X_n = n - a])$$

$$= (1 - 1) \, \mathbb{P}([X_n = n - a]) = 0$$

× D'autre part :

$$\frac{a-n+(n-a)}{s} \mathbb{P}([X_n = n-a]) + \frac{b+n-(n-a)+1}{s} \mathbb{P}([X_n = n-a-1])$$

$$= 0 \times \mathbb{P}([X_n = n-a]) + \frac{b+a+1}{s} \times 0 = 0$$

où l'avant-dernière égalité est vérifiée car $[X_n = n - a - 1] = \emptyset$.

L'égalité est toujours vérifiée pour k=n-a.

- Cas $k \in [1, n a 1]$.
 - × D'une part, l'événement $[X_{n+1} = k]$ est réalisé si et seulement si on a pioché k boules blanches lors des (n+1) premiers tirages. Cela signifie que l'on a pioché n-k boules noires. Or :

$$1 \le k \le n-a-1 \Leftrightarrow -1 \ge -k \ge -n+a+1 \Leftrightarrow n-1 \ge n-k \ge n-n+a+1$$

L'urne contient initialement a boules noires, il est donc impossible d'en pioché plus de a+1. On en déduit : $\forall k \in [1, n-a-1], [X_{n+1}=k]=\varnothing$. Donc :

$$\mathbb{P}([X_{n+1} = k]) = 0$$

× D'autre part, comme d'après 2.d) $[X_n = k] = \emptyset$ et $[X_n = k - 1] = \emptyset$, on a :

$$\frac{a-n+k}{s} \ \underline{\mathbb{P}([X_n-n+1])} + \frac{b+n-k+1}{s} \ \underline{\mathbb{P}([X_n-n])} \ = \ 0$$
 L'égalité est vérifiée pour $k \in [\![1,n-a-1]\!].$

b) Calculer, pour tout entier naturel n non nul, u_{n+1} en fonction de u_n et de n. En déduire que la suite $(u_n)_{n\geqslant 1}$ appartient à l'ensemble A étudié dans la question ??.

Démonstration.

Soit $n \in \mathbb{N}^*$.

• Par définition de $u_{n+1} = \mathbb{E}(X_{n+1})$:

$$\begin{array}{ll} u_{n+1} \\ &= \sum\limits_{k=0}^{n+1} k \, \mathbb{P}([X_{n+1}=k]) \, = \sum\limits_{k=1}^{n+1} k \, \mathbb{P}([X_{n+1}=k]) \\ &= \sum\limits_{k=1}^{n+1} k \left(\frac{b+n-k+1}{s} \, \mathbb{P}([X_n=k-1]) + \frac{a-n+k}{s} \, \mathbb{P}([X_n=k]) \right) \quad (d'après \ 3.a)) \\ &= \sum\limits_{k=1}^{n+1} k \, \frac{b+n-k+1}{s} \, \mathbb{P}([X_n=k-1]) + \sum\limits_{k=1}^{n+1} k \, \frac{a-n+k}{s} \, \mathbb{P}([X_n=k]) \\ &= \sum\limits_{k=0}^{n} (k+1) \, \frac{b+n-k}{s} \, \mathbb{P}([X_n=k]) + \sum\limits_{k=1}^{n+1} k \, \frac{a-n+k}{s} \, \mathbb{P}([X_n=k]) \quad (par \ d\'ecalage \ d'indice) \\ &= \sum\limits_{k=0}^{n} k \, \frac{b+n-k}{s} \, \mathbb{P}([X_n=k]) + \sum\limits_{k=0}^{n} \frac{b+n-k}{s} \, \mathbb{P}([X_n=k]) \\ &+ \sum\limits_{k=1}^{n} k \, \frac{a-n+k}{s} \, \mathbb{P}([X_n=k]) + (n+1) \frac{a+1}{s} \, \mathbb{P}([X_n=n+1]) \\ &= \sum\limits_{k=0}^{n} k \, \frac{b+n-k}{s} \, \mathbb{P}([X_n=k]) + \sum\limits_{k=0}^{n} \frac{b+n-k}{s} \, \mathbb{P}([X_n=k]) \\ &+ \sum\limits_{k=0}^{n} k \, \frac{a-n+k}{s} \, \mathbb{P}([X_n=k]) + \sum\limits_{k=0}^{n} \frac{b+n-k}{s} \, \mathbb{P}([X_n=k]) \\ &= \sum\limits_{k=0}^{n} k \, \left(\frac{b+n-k}{s} + \frac{a-n+k}{s} \right) \mathbb{P}([X_n=k]) + \mathbb{P}(B_{n+1}) \end{array}$$

En effet, d'après les questions 2.c) et 2.d):

$$\mathbb{P}(B_{n+1}) = \sum_{k=0}^{n} \frac{b+n-k}{s} \, \mathbb{P}([X_n = k])$$

On en déduit :

$$u_{n+1} = \sum_{k=0}^{n} k \frac{a+b}{s} \mathbb{P}([X_n = k]) + \frac{b+n-u_n}{s} \quad (d'après \ 2.d))$$

$$= \sum_{k=0}^{n} k \frac{s}{s} \mathbb{P}([X_n = k]) + \frac{b+n-u_n}{s}$$

$$= \sum_{k=0}^{n} k \mathbb{P}([X_n = k]) + \frac{b+n-u_n}{s}$$

$$= \mathbb{E}(X_n) + \frac{b+n-u_n}{s}$$

$$= u_n + \frac{b+n-u_n}{s}$$

$$\forall n \in \mathbb{N}^*, u_{n+1} = \frac{s-1}{s} u_n + \frac{b+n}{s}$$

• Soit $n \in \mathbb{N}^*$. En multipliant par s l'égalité précédente, on obtient :

$$s u_{n+1} = (s-1)u_n + b + n$$
La suite $(u_n)_{n\geqslant 1}$ appartient à A .

c) Donner, pour tout entier $n \in \mathbb{N}^*$, les valeurs de u_n et de $\mathbb{P}(B_{n+1})$ en fonction de b, s et n.

Démonstration.

• Soit $n \in \mathbb{N}^*$. D'après la question 1.b):

$$u_n = \left(\frac{s-1}{s}\right)^{n-1} (u_1 - 1 - b + s) + n + b - s$$

D'après 2.a):
$$\forall n \in \mathbb{N}^*, u_n = \left(\frac{s-1}{s}\right)^{n-1} \left(\frac{b}{s} - 1 - b + s\right) + n + b - s.$$

• Soit $n \in \mathbb{N}^*$. D'après les questions 2.c) et 2.d):

$$\mathbb{P}(B_{n+1}) = \frac{b+n-u_n}{s}$$

$$= \frac{1}{s} \left(b+n - \left(\left(\frac{s-1}{s} \right)^{n-1} (u_1 - 1 - b + s) + p+b-s \right) \right) \qquad (d'après \ le point \ précédent)$$

$$= -\frac{1}{s} \left(\frac{s-1}{s} \right)^{n-1} \left(\frac{b}{s} - 1 - b + s \right) + 1$$

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(B_{n+1}) = 1 - \frac{1}{s} \left(\frac{s-1}{s} \right)^{n-1} \left(\frac{b}{s} - 1 - b + s \right)$$

d) Quelles sont les limites des suites $(u_n)_{n\geqslant 1}$ et $(\mathbb{P}(B_n))_{n\geqslant 1}$?

Démonstration.

• La suite $\left(\left(\frac{s-1}{s}\right)^{n-1}\right)_{n\in\mathbb{N}^*}$ est une suite géométrique de raison $\frac{s-1}{s}$ avec $\left|\frac{s-1}{s}\right|<1$.

Donc :

$$\lim_{n \to +\infty} \left(\frac{s-1}{s} \right)^{n-1} = 0$$

• De plus $\lim_{n\to+\infty} n+b-s=+\infty$.

On en déduit :
$$\lim_{n \to +\infty} u_n = +\infty$$
.

• Enfin:

$$\lim_{n \to +\infty} \mathbb{P}(B_{n+1}) = 1 - \frac{1}{s} \times 0 \times \left(\frac{b}{s} - 1 - b + s\right) = 1 - 0$$

$$\lim_{n \to +\infty} \mathbb{P}(B_{n+1}) = 1$$