Devoir surveillé n° 1 (4h)

séries numériques

Avertissements

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements, seront pris en compte dans l'appréciation des copies. En particulier, les candidats sont invités à encadrer leurs résultats.
- Si un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.
- L'usage des calculatrices, ou de tout autre dispositif électronique, est interdit.
- L'épreuve est constituée de deux problèmes indépendants l'un de l'autre.

Problème 1 (E3A) - Série des restes d'une série convergente

Soient n_0 un entier naturel fixé et $\sum_{n\geqslant n_0}a_n$ une série convergente.

Pour tout entier naturel $n \ge n_0$, on note r_n son reste d'ordre n, défini par $r_n = \sum_{k=n+1}^{+\infty} a_k$.

Le but de ce problème est d'étudier la convergence de la série $\sum_{n \ge n_0} r_n$ dans quelques exemples, en partie I, puis dans un cadre plus général, en partie II.

Partie I - Quelques exemples usuels

- **1.** Soit $q \in \mathbb{C}$. On suppose dans cette question que $n_0 = 0$ et que $\forall n \ge 0$, $a_n = q^n$.
 - **1.1.** À quelle condition sur q la série $\sum_{n\geq 0} a_n$ est-elle convergente?

On suppose dans la suite de cette question que cette condition est réalisée.

- **1.2.** Expliciter r_n .
- 1.3. En déduire que la série $\sum_{n\geq 0} r_n$ converge et calculer sa somme.
- **2.** Soit $\alpha \in \mathbb{R}$. On suppose dans cette question que $n_0 = 1$ et que $\forall n \geqslant 1$, $a_n = \frac{1}{n^{\alpha}}$.
 - **2.1.** À quelle condition sur α la série $\sum_{n\geqslant 1}a_n$ est-elle convergente?

On suppose dans la suite de cette question que cette condition est réalisée.

2.2. À l'aide d'une comparaison série-intégrale, justifier que pour tous entiers n et N tels que $N \ge n \ge 1$, on a :

$$\sum_{k=n+1}^N \frac{1}{(k+1)^\alpha} \leqslant \int_{n+1}^{N+1} \frac{\mathrm{d}t}{t^\alpha} \leqslant \sum_{k=n+1}^N \frac{1}{k^\alpha}.$$

- **2.3.** En déduire que pour tout $n \ge 1$, $\frac{(n+1)^{1-\alpha}}{\alpha-1} \le r_n \le \frac{(n+1)^{1-\alpha}}{\alpha-1} + \frac{1}{(n+1)^{\alpha}}$.
- **2.4.** Justifier alors que $r_n \underset{n \to +\infty}{\sim} \frac{1}{(\alpha 1)n^{\alpha 1}}$.
- **2.5.** Conclure, en discutant selon la valeur de α , sur la nature de la série $\sum_{n\geqslant 1} r_n$.

- **3.** On suppose dans cette question que $n_0 = 1$ et que $\forall n \ge 1$, $a_n = \frac{(-1)^n}{n}$.
 - **3.1.** Justifier la convergence de $\sum_{n>1} a_n$.
 - **3.2.** Soit $n \ge 1$. On cherche dans cette question à obtenir une expression intégrale de r_n .

On pose $I_n = (-1)^n \int_0^1 \frac{x^n}{1+x} dx$.

- **a.** Montrer que $|I_n| \leq \frac{1}{n+1}$. En déduire la limite de la suite $(I_n)_{n \geq 1}$.
- **b.** Calculer $\sum_{k=0}^{n-1} (-x)^k$ et en déduire que $I_n = \ln(2) + \sum_{k=1}^n \frac{(-1)^k}{k}$.
- c. Déterminer alors la valeur de $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$, et justifier que $r_n = -I_n$.
- **3.3.** Conclusion.
 - a. Soit $n \ge 1$. En utilisant une intégration par parties, montrer que l'on a :

$$I_n = \frac{(-1)^n}{a(n+1)} + \mathop{O}_{n \to +\infty} \left(\frac{1}{n^{\alpha}}\right)$$

où $a \in \mathbb{R}$ et $\alpha > 1$ sont à déterminer.

b. En déduire la nature de la série $\sum_{n\geqslant 1} r_n$.

Partie II - Un résultat général

On suppose dans cette partie que $n_0 = 0$ et que pour tout $n \ge 0$, $a_n \ge 0$.

4. Pour $n \ge 1$, exprimer a_n en fonction de r_n et r_{n-1} . En déduire que :

$$\forall p \ge 1, \quad \sum_{n=0}^{p} r_n = (p+1)r_p + \sum_{n=0}^{p} na_n.$$

5. On suppose dans cette question que la série $\sum_{n\geq 0} r_n$ converge.

Montrer alors que la suite $\left(\sum_{n=0}^{p} na_n\right)_{p\geqslant 0}$ est majorée, puis que la série $\sum_{n\geqslant 0} na_n$ converge.

- **6.** On suppose dans cette question que la série $\sum_{n\geqslant 0} na_n$ converge, et on note R_n son reste d'ordre n.
 - **6.1.** Soit $p \ge 1$. Justifier l'encadrement $R_p \ge (p+1)r_p \ge 0$.
 - **6.2.** En déduire que la série $\sum_{n>0} r_n$ converge et que $\sum_{n=0}^{+\infty} r_n = \sum_{n=0}^{+\infty} na_n$.
- 7. Soit $q \in [0; 1[$. À l'aide des résultats établis dans la question 1 et dans cette partie, justifier que la série $\sum_{n>0} nq^n$ converge, et calculer sa somme.
- **8.** Soit $x \in \mathbb{R}_+$. On suppose dans cette question que $\forall n \ge 0$, $a_n = \frac{x^n}{n!}$.

À l'aide des résultats de cette partie, montrer que la série $\sum_{n\geqslant 0} r_n$ converge et calculer sa somme.

Problème 2 (Centrale) - Étude de deux propriétés des séries

Dans tout ce problème, les suites et séries considérées sont à termes réels et indicées par \mathbb{N} . L'objectif de ce problème est d'étudier deux propriétés portant sur les séries, notées (P_1) et (P_2) , et définies respectivement dans les parties I et II ci-dessous.

Partie I - Propriété (P_1) .

On dit qu'une série $\sum a_n$ vérifie la propriété (P_1) si :

 (P_1) : pour toute suite bornée (u_n) , la série $\sum a_n u_n$ converge.

- 1. Montrer que si $\sum a_n$ converge absolument, alors $\sum a_n$ vérifie la propriété (P_1) .
- 2. Soit $\sum a_n$ une série ne convergeant pas absolument. Construire une suite $(u_n) \in \{-1; 1\}^{\mathbb{N}}$ telle que la série $\sum a_n u_n$ diverge.
- 3. Caractériser les séries $\sum a_n$ vérifiant la propriété (P_1) .

Partie II - Propriété (P_2) .

On dit qu'une série $\sum a_n$ vérifie la propriété (P_2) si :

 (P_2) : pour toute série convergente $\sum u_n$, la série $\sum a_n u_n$ converge.

- **4.** Soit $\sum a_n$ une série telle que la série $\sum |a_{n+1} a_n|$ converge.
 - **4.1.** Prouver que la suite (a_n) converge.
 - **4.2.** Soit $\sum u_n$ une série convergente. On note $U_n = \sum_{k=0}^n u_k$ sa somme partielle d'ordre n.

Prouver, pour tout entier naturel N, la relation :

$$\sum_{n=0}^{N} a_n u_n = \sum_{n=0}^{N-1} (a_n - a_{n+1}) U_n + a_N U_N.$$

- **4.3.** En déduire que la série $\sum a_n$ vérifie la propriété (P_2) . On pourra en particulier utiliser le résultat établi dans la partie I.
- 5. Soit $\sum a_n$ une série divergente de réels positifs.

On se propose de construire une suite (ε_n) tendant vers 0 telle que la série $\sum a_n \varepsilon_n$ diverge. Pour cela on définit par récurrence trois suites (p_n) , (ε_n) et (A_n) de la façon suivante :

- On pose $p_0 = 0$, $\varepsilon_0 = 1$ et $A_0 = a_0$.
- Pour $n \geqslant 1$:
 - * si $A_{n-1} < p_{n-1}$, alors on pose $p_n = p_{n-1}$, $\varepsilon_n = \varepsilon_{n-1}$ et $A_n = A_{n-1} + a_n \varepsilon_n$.
 - * si $A_{n-1} \geqslant p_{n-1}$, alors on pose $p_n = 1 + p_{n-1}$, $\varepsilon_n = \frac{\varepsilon_{n-1}}{2}$ et $A_n = A_{n-1} + a_n \varepsilon_n$.
- **5.1.** Étude d'un exemple. Dans le cas où la suite (a_n) est la suite constante égale à 1 :
 - **a.** Donner les 5 premiers termes des suites (p_n) , (ε_n) et (A_n) ainsi définies.

- **b.** Écrire une fonction Python construction prenant en paramètre un entier naturel n et renvoyant le triplet $(p_n, \varepsilon_n, A_n)$.
- **5.2.** Dans le cas général, justifier l'existence, pour tout $k \in \mathbb{N}$, d'un entier naturel n_k tel que :

$$p_{n_k} = k \text{ et } \varepsilon_{n_k} = \frac{1}{2^k}.$$

- **5.3.** Prouver que la suite (ε_n) tend vers 0 et que la série $\sum a_n \varepsilon_n$ diverge.
- **6.** Soit $\sum a_n$ une série telle que, pour toute suite (ε_n) tendant vers 0, la série $\sum a_n \varepsilon_n$ converge.
 - **6.1.** Prouver que pour toute suite (ε_n) tendant vers 0, la série $\sum |a_n|\varepsilon_n$ converge.
 - **6.2.** En déduire que la série $\sum |a_n|$ converge.
- 7. Soit maintenant une série $\sum a_n$ vérifiant la propriété (P_2) .
 - **7.1.** Prouver que la suite (a_n) est bornée.
 - **7.2.** Soit (ε_n) une suite tendant vers 0. Prouver que la série $\sum \varepsilon_n (a_{n+1} a_n)$ converge.
 - **7.3.** Prouver que la série $\sum |a_{n+1} a_n|$ converge.
- 8. Caractériser les séries vérifiant la propriété (P_2) .