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Interrogation de cours 16

On considère l’équation différentielle :

(1− 4x) y′ − 2 y = 0 (E)

Pour ce faire, on se propose d’étudier les solutions développables en série entière de cette équation.
1. On suppose qu’il existe une fonction f solution de (E) et développable en série entière.

Autrement dit, il existe une série entière
∑

anx
n, de rayon de convergence R > 0, telle que :

× f est solution de E,

× ∀x ∈ ]−R,R[, f(x) =
+∞∑
n=0

an x
n.

a) Déterminer une relation entre an+1 et an pour tout n ∈ N.

Démonstration.
• Comme f est la somme d’une série entière de rayon de convergence R > 0 alors f est de classe

C∞ sur ]−R,R[. Elle est donc en particulier deux fois dérivable sur cet intervalle.
• De plus, pour tout x ∈ ]−R,R[ :

f ′(x) =
+∞∑
n=1

nan x
n−1

Soit x ∈ R.

(1− 4x) f ′(x)− 2 f(x)

= f ′(x)− 4x f ′(x)− 2 f(x)

=
+∞∑
n=1

nan x
n−1 − 4x

+∞∑
n=1

nan x
n−1 − 2

+∞∑
n=0

an x
n

=
+∞∑
n=1

nan x
n−1 −

+∞∑
n=1

(
4 nan

)
xn −

+∞∑
n=0

(
2 an

)
xn

=
+∞∑
n=0

(n+ 1) an+1 x
n −

+∞∑
n=1

(
4 nan

)
xn −

+∞∑
n=0

(
2 an

)
xn

= (0 + 1) a0+1 x
0 −

(
2 a0

)
x0 +

+∞∑
n=1

(
(n+ 1) an+1

)
xn −

+∞∑
n=1

(
4 nan

)
xn −

+∞∑
n=1

(
2 an

)
xn

= a1 − 2 a0 +
+∞∑
n=1

( (
(n+ 1) an+1

)
−
(
4 nan

)
−
(
2 an

) )
xn

• Comme f est solution de (E) :

∀x ∈ ]−R,R[, a1 − 2 a0 +
+∞∑
n=1

( (
(n+ 1) an+1

)
−
(
4 nan

)
−
(
2 an

) )
xn = 0

On en déduit, par unicité du développement en série entière :{
a1 − 2 a0 = 0

∀n ⩾ 1,
(
(n+ 1) an+1

)
−
(
4 nan

)
−
(
2 an

)
= 0

et donc, pour tout n ⩾ 1 :

(n+ 1) an+1 = (4n+ 2) an et donc an+1 =
4n+ 2

n+ 1
an
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Comme
4× 0 + 2

0 + 1
a0 = 2 a0 = a1 alors, la propriété est aussi vérifiée en 0.

Finalement : ∀n ∈ N, an+1 =
4n+ 2

n+ 1
.

b) Démontrer (avec soin) par récurrence, à l’aide de la relation précédente : ∀n ∈ N, an =

(
2n

n

)
a0.

Démonstration.
Démontrons par récurrence : ∀n ∈ N, an =

(
2n

n

)
a0.

▶ Initialisation :

Comme
(
2× 0

0

)
=

(
0

0

)
= 1 alors a0 =

(
2× 0

0

)
a0.

D’où P(0).

▶ Hérédité : soit n ∈ N.

Supposons P(n) et démontrons P(n+ 1) (c’est-à-dire : an+1 =

(
2(n+ 1)

n+ 1

)
a0).

an+1 =
2 (2n+ 1)

n+ 1
an (d’après la question précédente)

=
2 (2n+ 1)

n+ 1

(
2n

n

)
a0 (par hypothèse de récurrence)

=
2 (2n+ 1)

n+ 1

(2n)!

n!× n!
a0

= 2
(2n+ 1)× (2n)!

(n+ 1) n!× n!

n+ 1

n+ 1
a0

=
2 (n+ 1) (2n+ 1)× (2n)!

(n+ 1) n!× (n+ 1) n!
a0

=
(2n+ 1)!

(n+ 1)!× (n+ 1)!
a0

D’où P(n+ 1)

Ainsi, par principe de récurrence : ∀n ∈ N, P(n).

2. Réciproquement, on note g : x 7→
+∞∑
n=0

(
2n

n

)
xn.

a) Déterminer le rayon de convergence de la série entière
∑ (

2n

n

)
xn.

Démonstration.
On note (an) la suite définie par : ∀n ∈ N, an =

(
2n

n

)
.
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Soit n ∈ N. ∣∣∣∣ an+1

an

∣∣∣∣ =

(
2n+2
n+1

)(
2n
n

)
=

(2n+2)!
(n+1)!×(n+1)!

(2n)!
n!×n!

=
(2n+ 2)!

(n+ 1)!× (n+ 1)!
× n!× n!

(2n)!

=
(2n+ 2)× (2n+ 1)× (2n)! × n! × n!

(2n)! × (n+ 1) n! × (n+ 1) n!

∼
n→+∞

2n× 2n

n× n

= 4

Comme 4 −→
n→+∞

4 alors, par règle de d’Alembert sur les séries entières : Rcv

(∑
an xn

)
=

1

4
.

• On aurait pu présenter différemment la fin du calcul ci-dessus :∣∣∣∣ an+1

an

∣∣∣∣ =
(2n+ 2)× (2n+ 1)× (2n)! × n! × n!

(2n)! × (n+ 1) n! × (n+ 1) n!

=
2 (n+ 1) × (2n+ 1)

(n+ 1)× (n+ 1)

=
4n+ 2

(n+ 1)

On retrouve alors la propriété : ∀n ∈ N, an+1 =
4n+ 2

n+ 1
an. Cela ne doit pas nous étonner :

× en question 1.b), on démontre que toute suite vérifiant cette relation de récurrence a pour

terme général : an =

(
2n

n

)
a0.

× dans cette question, on considère la suite définie par : ∀n ∈ N, an =

(
2n

n

)
. Cela correspond

au point précédent dans le cas a0 = 1. Il est donc fort logique que cette suite, cas particulier
de la précédente, soit régie par la même relation de récurrence.

On pouvait d’ailleurs ne pas refaire les calculs et citer la question 1.b pour justifier directe-

ment :
an+1

an
=

4n+ 2

n+ 1
.

• Ce même constat pourra être fait dès lors que la relation de récurrence établie en début de
démonstration sera d’ordre 1. Il est cependant assez classique de tomber sur des relations
de récurrence d’ordre 2 (qui lient an+2 à an+1 et an). Dans ce cas, le calcul

an+1

an
devient

obligatoire.

Commentaire
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b) Comment démontrer que la fonction g est solution de (E) ?

Démonstration.

• Comme Rcv

(∑
an xn

)
=

1

4
, la fonction g est développable en série entière sur ]− 1

4 ,
1
4 [.

Elle est donc de classe C∞ sur cet intervalle. De plus, pour tout x ∈ ]− 1
4 ,

1
4 [ :

g′(x) =
+∞∑
n=0

nan xn−1

• On calcule alors, pour tout x ∈ ]− 1
4 ,

1
4 [ :

(1− 4x) f ′(x)− 2 f(x) = . . .

= a1 − 2 a0 +
+∞∑
n=1

(
(n+ 1) an+1 − (4n+ 2) an

)
xn

=

(
2

1

)
− 2

(
0

0

)
+

+∞∑
n=1

(
(n+ 1) an+1 − (4n+ 2) an

)
xn

= 0

3. Conclure de cette étude l’ensemble des solutions de (E) sur l’intervalle ]− 1
4 ,

1
4 [.

Démonstration.

• L’équation (E) est une équation différentielle linéaire d’ordre 1 homogène dont les coefficients
sont des fonctions continues sur ] − 1

4 ,
1
4 [ et dont le premier coefficient ne s’annule pas sur cet

intervalle.

• On en conclut que l’ensemble des solutions S de (E) sur ] − 1
4 ,

1
4 [ est un espace vectoriel de

dimension 1.

• Or, d’après l’étude précédente : g ∈ S .

Finalement : S = Vect (g).

• On peut démontrer :

∀x ∈ ]− 1

4
,
1

4
[, g(x) =

1√
1− 4x

• Pour ce faire, il suffit de déterminer le développement en série entière de la fonction x 7→ 1√
1− 4x

en partant des développements usuels (en l’occurrence de celui de la fonction x 7→ (1 + x)α). On
démontre alors que les coefficients de ce développement sont exactement ceux du développement
en série entière de g, ce qui permet de conclure à l’égalité de ces deux fonctions, par unicité du
développement en série entière.

Commentaire

4


