Interrogation 8

1.	Àl	'aide	e d'une	intégration	par	parties,	démontrer	que l	'intégrale	$\int_{1}^{+\infty}$	$\frac{\sin(t)}{t}$	dt est convergente.	
	_				_		_						

On justifiera avec une grande précision la convergence des éléments en présence.

2. La fonction $t\mapsto \frac{\sin(t)}{t}$ est-elle intégrable en $+\infty$? (aucune justification n'est attendue)

3. Démontrer que l'intégrale $\int_1^{+\infty} \left(\sin\left(\frac{1}{t}\right) - \frac{1}{t} \right) dt$ est convergente. On ne cherchera pas à déterminer sa valeur.

4. On considère l'intégrale impropre $\int_1^{+\infty} \frac{1}{t\left(1+\left(\ln(t)\right)^2\right)} dt$ et on admet qu'elle est convergente. Effectuer le changement de variable $\varphi:t\mapsto \mathrm{e}^t$.

5. On note $M = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}$. Déterminer $E_2(M)$.