Exercice 3. $(\bigstar \bigstar)$

Soit $t \in \mathbb{R} \setminus \{0,1\}$. On considère un couple (X,Y) dont la loi est :

 $y \in Y(\Omega)$

Feuille d'exercices n°10 : Couples de v.a.r. discrètes

Couple de v.a.r. finies

Exercice 1. (\bigstar)

La loi conjointe du couple (X,Y) est donnée par :

$y \in Y(\Omega)$ $x \in X(\Omega)$	0	1	2
0	$\frac{1}{20}$	$\frac{1}{4}$	0
1	$\frac{17}{60}$	$\frac{1}{4}$	$\frac{1}{6}$

- a. Vérifier qu'on a bien défini une loi de couple puis déterminer les lois marginales.
- b. X et Y sont-elles indépendantes?
- c. Calculer $\mathbb{E}(X)$, $\mathbb{E}(Y)$ et $\mathbb{E}(XY)$.

Exercice 2. (\bigstar)

Soit X_1 et X_2 deux variables indépendantes et de même loi, avec :

$$\mathbb{P}(X_i = 0) = \frac{1}{6}, \ \mathbb{P}(X_i = 1) = \frac{1}{3} \text{ et } \mathbb{P}(X_i = 2) = \frac{1}{2}$$

On note $S = X_1 + X_2$ et $P = X_1 X_2$.

- a. Vérifier que la loi donnée est bien une loi de probabilité.
- **b.** Déterminer la loi du couple (S, P).
- c. Déterminer les lois marginales du couple (S, P). Les v.a.r. S et P sont-elles indépendantes?
- d. Calculer $\mathbb{E}(S)$, $\mathbb{E}(P)$, $\mathbb{V}(S)$, $\mathbb{V}(P)$, $\mathrm{Cov}(S,P)$ et le coefficient de corrélation linéaire $\rho(S, P)$. Les v.a.r. S et P sont-elles corrélées?

- 0 $x \in X(\Omega)$ 0 1 1 $\overline{10}$
- a. Déterminer a et b de sorte que X et Y soient indépendantes. Quelles seraient alors les lois conditionnelles de X pour les différentes valeurs de Y?
- **b.** On suppose $a = \frac{1}{5}$. Déterminer t tel que le coefficient de corrélation linéaire de X et Y soit égal à 0. X et Y sont-elles indépendantes?

Exercice 4. (\bigstar)

Soit X une v.a.r. suivant la loi uniforme discrète sur [1, n] (avec $n \in \mathbb{N}^*$). Soit $Y = (1 + X)^2$. Calculer les moments d'ordre 1, 2 et 3 de la variable X. En déduire la covariance de 2X et Y.

Loi conditionnelle d'une v.a.r.

Exercice 5. $(\star\star)$

On considère n boîtes sont numérotées de 1 à n.

Pour tout $k \in [1, n]$, la boîte $n^{\circ}k$ contient k boules numérotées de 1 à k.

On choisit au hasard une boîte, puis une boule dans cette boîte.

Soit X et Y les numéros de la boîte et de la boule obtenus.

- a. Déterminer la loi de X.
- **b.** Pour tout $k \in [1, n]$, déterminer la loi conditionnelle de Y sachant [X = k].
- c. En déduire la loi du couple (X,Y).
- **d.** Calculer $\mathbb{P}(X=Y)$.
- e. Déterminer la loi de Y et son espérance.

Exercice 6. $(\bigstar \bigstar)$ (d'après ESC 2004)

N désigne un entier naturel supérieur ou égal à 2.

Un joueur lance une pièce équilibrée indéfiniment. On note X_N la v.a.r. réelle discrète égale au nombre de fois où, au cours des N premiers lancers, deux résultats successifs ont été différents. On peut appeler X_N le « nombre de changements » au cours de N premiers lancers.

Par exemple, si les N=9 premiers lancers ont donné successivement : Pile, Pile, Face, Pile, Face, Face, Face, Pile, Pile, alors la variable X_9 aura pris la valeur 4 (quatre changements aux $3^{i\grave{e}me}$, $4^{i\grave{e}me}$, $5^{i\grave{e}me}$ et $8^{i\grave{e}me}$ lancers).

- 1. Justifier que $X_N(\Omega) = [0, N-1]$.
- 2. Déterminer la loi de X_2 , ainsi que son espérance. Déterminer la loi de X_3 .
- 3. Montrer que $\mathbb{P}(X_N = 0) = \left(\frac{1}{2}\right)^{N-1}$ et $\mathbb{P}(X_N = 1) = 2(N-1)\left(\frac{1}{2}\right)^N$.
- **4.** a) Justifier que : $\forall k \in [0, N-1], P_{[X_N=k]}([X_{N+1}=k]) = \frac{1}{2}$.
 - **b)** En déduire que pour tout $k \in [0, N-1]$:

$$\mathbb{P}((X_{N+1} - X_N = 0) \cap (X_N = k)) = \frac{1}{2} \mathbb{P}(X_N = k)$$

- c) En sommant cette relation pour k variant de 0 à N-1, montrer que $\mathbb{P}\left(X_{N+1}-X_N=0\right)=\frac{1}{2}.$
- d) Montrer que $X_{N+1} X_N$ suit une loi de Bernoulli de paramètre $\frac{1}{2}$. En déduire la relation $\mathbb{E}(X_{N+1}) = \frac{1}{2} + \mathbb{E}(X_N)$. Enfin, donner $\mathbb{E}(X_N)$ en fonction de N.
- 5. a) Montrer grâce aux résultats 4.b) et 4.c) que les variables $X_{N+1} X_N$ et X_N sont indépendantes.
 - b) En déduire par récurrence sur N que $X_N \hookrightarrow \mathcal{B}\left(N-1,\frac{1}{2}\right)$. En déduire la variance $\mathbb{V}(X_N)$.
- 6. Écrire un programme Scilab qui simule cette expérience et qui affiche la valeur d'une réalisation de X_N , l'entier N étant entré au clavier par l'utilisateur.

Exercice 7. $(\bigstar \bigstar)$

On considère une expérience aléatoire modélisée par le programme suivant.

```
function X = exo(n)
X = 0
for i = 1:n
if X = 0 then
 X = -1 + grand(1,1,"uin",0,1) * 2
else
X = -1 + grand(1,1,"uin",0,2)
end
end
end
end
end
end
end
function
```

- a. Décrire l'expérience ainsi modélisée.
- **b.** Pour tout entier $k \leq n$, on note X_k la v.a.r. égale au $k^{\text{ème}}$ nombre calculé. Déterminer $X_k(\Omega)$ puis la loi de X_{k+1} conditionnée par celle de X_k .
- c. En déduire la loi, l'espérance et la variance de X_k . Pouvait-on prévoir la valeur de l'espérance?
- d. Modifier le programme précédent pour qu'il donne la première valeur (non nulle) de k pour laquelle $X_k = 0$. On note Y cette valeur.
- e. Donner la loi, l'espérance et la variance de Y.

Exercice 8. $(\bigstar \bigstar)$

Un boulanger possède un ensemble de pochettes surprise. Lorsqu'on en achète une, on peut :

- \times soit gagner une montre avec une probabilité m,
- \times soit gagner un euro avec la probabilité e,
- × soit ne rien gagner.

Un client achète n pochettes surprise, avec $n \in \mathbb{N}^*$. On désigne par M la v.a.r. égale au nombre de montres gagnées et E la v.a.r. égale au nombre d'euros gagnés.

- 1. Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}$. Calculer $\sum_{k=0}^n k \binom{n}{k} x^k$ en fonction de n et de x.
- 2. a) Déterminer la loi de M.
 - b) Déterminer la loi conjointe du couple (M, E).
- 3. On suppose que k pochettes ont rapporté quelque chose. Soit T_k la v.a.r. égale à la proportion de montres par rapport au nombre de pochettes ayant rapporté quelque chose.

Déterminer la loi de T_k .

Calculer l'espérance de T_k en fonction de m et de e.

Loi d'une somme de v.a.r. discrètes

Exercice 9. $(\bigstar \bigstar)$

On lance un dé indéfiniment. On note X la v.a.r. égale au nombre de lancers nécessaires pour obtenir le premier 6.

On note Y la v.a.r. nombre de lancers nécessaires, après l'obtention du premier 6, pour obtenir le deuxième 6.

- a. Déterminer les lois de X, de Y, leurs espérance et leurs variances.
- **b.** Soit Z = X + Y. Déterminer l'espérance et la variance de Z.
- c. Déterminer la loi de Z.
- d. Interpréter ce que représente Z. Retrouver directement la loi de Z.

Exercice 10. $(\bigstar \bigstar)$

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a.r. mutuellement indépendantes.

On admet que, pour tout $n \ge 2$, $X_1 + \ldots + X_n$ et X_{n+1} sont indépendantes. On suppose que $X_i \hookrightarrow \mathcal{P}(1)$ et, pour tout $n \in \mathbb{N}^*$, on considère :

$$S_n = \sum_{k=1}^n X_k$$
 et $S_n * = \frac{S_n - n}{\sqrt{n}}$

- a. Montrer que S_n suit une loi de Poisson de paramètre n.
- **b.** En déduire $\mathbb{E}(S_n)$ et $\mathbb{V}(S_n)$.
- c. Déterminer l'espérance et la variance de S_n^* .
- **d.** Montrer que pour tout $n \in \mathbb{N}^*$, $\mathbb{P}([S_n^* \leq 0]) = e^{-n} \sum_{k=0}^n \frac{n^k}{k!}$.

Exercice 11. (★★)

Soient X et Y deux variables aléatoires discrètes indépendantes.

Notons Z la v.a.r. définie par Z = X + Y.

- 1) On suppose que $X \hookrightarrow \mathcal{P}(\lambda)$ et $Y \hookrightarrow \mathcal{P}(\mu)$.
 - a. Démontrer que :

$$\forall k \in \mathbb{N}, \ [X+Y=k] = \bigcup_{\ell=0}^{k} \ [X=\ell] \cap [Y=k-\ell]$$

- **b.** Déterminer la loi de Z.
- 2) On suppose que $X \hookrightarrow \mathcal{G}(p)$ et $Y \hookrightarrow \mathcal{G}(p)$.
 - a. Démontrer que :

$$\forall k \in \mathbb{N} \setminus \{0, 1\}, [X + Y = k] = \bigcup_{\ell=1}^{k-1} [X = \ell] \cap [Y = k - \ell]$$

b. Déterminer la loi de Z.

Exercice 12. $(\bigstar \bigstar)$ (d'après EDHEC 1999)

Soient X,Y et Z trois v.a.r. mutuellement indépendantes et définies sur le même espace probabilisé (Ω, \mathcal{A}, P) .

On suppose que X, Y et Z suivent la loi uniforme discrète sur [1, n].

- 1. a) Montrer que : $\forall k \in [2, n+1], \ P(X+Y=k) = \frac{k-1}{n^2}.$
 - **b)** Montrer que : $\forall k \in [n+2, 2n], \ P(X+Y=k) = \frac{2n-k+1}{n^2}.$
- 2. Utiliser la formule des probabilités totales pour déduire de la première question que : $P(X + Y = Z) = \frac{n-1}{2n^2}$.
- 3. a) Montrer que la variable aléatoire T = n + 1 Z suit la loi uniforme discrète sur [1, n].
 - b) Pourquoi T est-elle indépendante de X et de Y?
 - c) En faisant intervenir la variable T et en utilisant la deuxième question, déterminer la probabilité P(X + Y + Z = n + 1).

Indépendance de v.a.r. discrètes

Exercice 13. $(\bigstar \bigstar)$

Une urne contient N-2 boules vertes, 1 boule blanche et 1 boule rouge. On tire les boules de l'urne, une à une et sans remise.

- 1. Soit X_1 le rang d'apparition de la boule blanche, X_2 le rang d'apparition de la boule rouge.
 - a) Déterminer la loi de X_1 , la loi de X_2 , la loi du couple (X_1, X_2) .
 - b) Les variables X_1 et X_2 sont-elles indépendantes?
- 2. Soit X le rang où on obtient pour la première fois soit la boule blanche, soit la boule rouge. Soit Y le rang où on a obtenu pour la première fois les deux boules blanche et rouge.
 - a) Déterminer la loi de X et la loi de Y.
 - b) Calculer les espérances de X et de Y.

Exercice 14. $(\bigstar \bigstar)$

Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables de Bernoulli de paramètre p $(0 , indépendantes. Pour tout <math>n \in \mathbb{N}^*$, on pose $Y_n = X_n X_{n+1}$ et $T_n = \sum_{i=1}^n Y_i$.

- a. Déterminer, pour tout $n \in \mathbb{N}^*$, la loi de Y_n , son espérance et sa variance.
- **b.** Déterminer, pour tout $n \in \mathbb{N}^*$, la loi de (Y_n, Y_{n+1}) et $Cov(Y_n, Y_{n+1})$.
- c. Déterminer, pour tout $n \in \mathbb{N}^*$ et tout entier $k \ge 2$, la loi de (Y_n, Y_{n+k}) . Les variables Y_n et Y_{n+k} sont-elles indépendantes?
- **d.** Calculer $\mathbb{E}(T_n)$ et $\mathbb{V}(T_n)$.

Exercice 15. $(\bigstar \bigstar)$ (d'après EML 2007)

On considère deux v.a.r. U et Y définies sur un même espace probabilisé (Ω, \mathcal{A}, P) . On suppose que les variables U et Y sont indépendantes, U suit la loi de Bernoulli de paramètre $\frac{1}{2}$ et la loi de Y est donnée par :

- $Y(\Omega) = \mathbb{N} \text{ et } \forall n \in \mathbb{N}, \ \mathbb{P}(Y=n) = (1 \frac{1}{e}) e^{-n}. \text{ On note } T = (2U 1) \ Y.$
- a. Montrer que Y+1 suit une loi géométrque dont on précisera le paramètre. En déduire l'espérance et la variance de Y.
- **b.** Montrer que T admet une espérance $\mathbb{E}(T)$, et calculer $\mathbb{E}(T)$.

Exercice 16. $(\bigstar \bigstar)$

Deux urnes U_1 et U_2 contiennent des boules blanches et des boules noires. Plus précisément :

- \times U_1 contient 2 boules blanches et 2 boules noires,
- \times U_2 contient 1 boule blanche et 3 boules noires.

On effectue une suite de tirages avec remise de la boule tirée en procédant comme suit :

- Le premier tirage s'effectue dans U_1 .
- Si au $n^{\text{ème}}$ tirage on obtient une boule blanche alors le (n+1)-ième tirage s'effectue dans U_1 .
- Si au $n^{\text{ème}}$ tirage on obtient une boule noire alors le (n+1)-ième tirage s'effectue dans U_2 .

On désigne par :

- $\times p_n$ la probabilité d'obtenir une boule blanche au $n^{\text{ème}}$ tirage,
- \times X_n la v.a.r. qui vaut 1 si la boule obtenue au $n^{\rm \grave{e}me}$ tirage est blanche, 0 sinon.
- \times S_n est le nombre total de boules blanches obtenues au bout de n tirages.
- **a.** Calculer p_1 et p_2 .
- **b.** Déterminer une relation entre p_{n+1} et p_n . En déduire l'expression de p_n en fonction de n, et la limite de p_n quand n tend vers $+\infty$.
- c. Pour n supérieur ou égal à 1, donner la loi de X_n . Préciser $\mathbb{E}(X_n)$ et $\mathbb{V}(X_n)$.
- d. Les v.a.r. X_1 et X_2 sont-elles indépendantes?
- e. Exprimer S_n en fonction des X_k , $1 \leq k \leq n$. En déduire $\mathbb{E}(S_n)$.

Exercice 17. $(\bigstar \bigstar)$

Soit X une v.a.r. de loi uniforme sur [-1, 1]. On note $Y = X^2$.

- a. Montrer que les v.a.r. X et Y ne sont pas indépendantes.
- **b.** Calculer Cov(X,Y). Commenter.

Événement dépendant de deux v.a.r. discrètes

Exercice 18. $(\bigstar \bigstar)$

On considère un lot de 10 dés cubiques dont les faces sont numérotées de 1 à 6. Sur ces 10 dés, cinq sont équilibrés, les cinq autres sont truqués. Pour un dé truqué, la probabilité d'obtenir 1 quand on le lance sera prise égale à $\frac{6}{6}$.

- 1. On choisit un dé au hasard, on le lance 3 fois et on obtient 3 fois la face nº 1. Quelle est la probabilité de l'événement : « le dé choisi est truqué »?
- 2. On effectue des lancers successifs d'un dé équilibré et on arrête dès que l'on a obtenu pour la première fois la face n° 1.

Soit X la v.a.r. égale au nombre de lancers effectués avec ce dé.

On effectue des lancers successifs d'un dé truqué et on arrête dès que l'on a obtenu pour la première fois la face n° 1.

Soit Y la v.a.r. égale au nombre de lancers effectués avec ce dé.

- a) Déterminer la loi de X et calculer l'espérance et la variance de X.
- b) Déterminer la loi de Y et calculer l'espérance et la variance de Y.
- 3. Calculer la probabilité de l'événement [X = Y].
- 4. Calculer la probabilité de l'événement [X < Y].
- 5. On prend un dé truqué, on effectue des lancers successifs et on arrête dès que l'on a obtenu pour la première fois une face ne portant pas le nº 1. Soit Z la v.a.r. égale au nombre de lancers effectués avec ce dé. Déterminer la loi de probabilité de la v.a.r. X+Z et calculer son espérance.

Exercice 19. $(\star\star)$

Deux personnes A et B partent en vacances de façon indépendante dans un pays E. Leur séjour dans ce pays peut s'étaler sur n journées (n > 3)numérotées $1, 2, \ldots, n$.

Pour éventuellement s'y rencontrer, elles ont projeté d'y séjourner trois jours consécutifs (et trois jours seulement) dans un hôtel H, choisi par elles. On suppose que les jours d'arrivée possibles $1, 2, \ldots, n-2$ de ces deux personnes dans cet hôtel sont deux v.a.r. uniformes et indépendantes. Les arrivées ont lieu le matin et les départs le soir deux jours plus tard.

- 1. a) Quelle est la probabilité que A et B arrivent le même jour?
 - b) Quelle est la probabilité qu'elles arrivent avec un jour d'écart?
 - c) Quelle est la probabilité qu'elles puissent se rencontrer dans l'hôtel?
- 2. Sachant que A et B se sont rencontrées, quelle est la probabilité qu'elles ne puissent passer qu'une journée ensemble?

Exercice 20. $(\bigstar \star)$ (d'après ECRICOME 2000)

On considère une urne contenant des boules blanches (en proportion p), des boules rouges (en proportion r) et des boules vertes (en proportion u).

On suppose que $p \geqslant \frac{1}{4}$, $r \geqslant \frac{1}{4}$, $u \geqslant \frac{1}{4}$ et que p+r+u=1.

On effectue indéfiniment des tirages successifs d'une boule dans cette urne avec remise entre deux tirages.

Pour tout $n \in \mathbb{N}^*$, on note B_n (respectivement R_n, V_n) l'événement : « Tirer une boule blanche (respectivement rouge, verte) au $n^{i\grave{e}me}$ tirage ».

On appelle X (respectivement Y) la v.a.r. égale au rang d'apparition de la première blanche (respectivement rouge).

On définit alors la variable D = |X - Y| égale au nombre de tirages séparant la sortie de la première blanche et de la première rouge.

- 1. a) Déterminer la loi de X.
 - \boldsymbol{b}) Déterminer la loi de Y.
- 2. Soit i et i des entiers naturels non nuls.
 - a) En distinguant les cas i = j, i < j et i > j, exprimer l'événement $[X=i] \cap [Y=j]$ à l'aide des événements décrits dans l'énoncé.
 - **b)** En déduire la loi du couple (X, Y).
- 3. Les variables X et Y sont-elles indépendantes?
- 4. Soit k un entier naturel non nul, montrer l'égalité :

$$\mathbb{P}([D=k]) = \frac{pr}{p+r} \left((1-p)^{k-1} + (1-r)^{k-1} \right)$$

Cœfficient de corrélation linéaire

Exercice 21. $(\bigstar \bigstar)$

Soient X et Y deux v.a.r. discrètes. On note $P(\lambda) = \mathbb{V}(\lambda X + Y)$.

- 1. a) Démontrer que P est un polynôme du deuxième degré en λ .
 - b) Prouver que P est toujours positif.
 - c) En déduire le signe de son discriminant.
 - d) En déduire que $|\operatorname{Cov}(X,Y)| \leq \sigma(X) \ \sigma(Y)$.
- 2. On suppose que $\rho(X,Y)=\pm 1$.
 - a) Déterminer le discriminant de P.
 - b) En déduire qu'il existe un réel a tel que V(aX + Y) = 0.
 - c) Que peut-on en déduire sur X et Y?

Exercice 22. $(\bigstar \bigstar)$ (d'après ESG 95)

Le nombre de voitures vendues par un concessionnaire chaque jour est une v.a.r. X qui suit une loi de Poisson de paramètre λ .

Lorsqu'un client se présente pour acheter une voiture, on admet que la probabilité qu'il demande un crédit est égale à p, avec 0 .

Soit Y la v.a.r. égale au nombre de clients qui dans la journée demandent un crédit pour acheter une voiture.

- 1. Pour tout $(k,n) \in \mathbb{N}^2$, calculer $\mathbb{P}_{[X=n]}([Y=k])$.
- 2. Déterminer la loi conjointe du couple (X,Y)
- 3. Déterminer la loi de Y, puis calculer l'espérance et la variance de Y.
- 4. Soit Z la v.a.r. égale au nombre de clients qui achètent dans la journée une voiture au comptant.
 - a) Déterminer la loi de Z.
 - b) Les variables Y et Z sont-elles indépendantes?
- 5. En remarquant que Y + Z = X, déterminer la covariance de X et Y.
- 6. a) Calculer $\rho_{X,Y}$, le coefficient de corrélation linéaire de X et Y.
 - b) Commenter le signe de $\rho_{X,Y}$. Les variables X et Y sont-elles indépendantes?
 - c) X peut-elle être une fonction affine de Y?

Exercice 23. $(\bigstar \bigstar)$

Démontrer que deux variables de Bernoulli sont indépendantes si, et seulement si, elles sont non corrélées.

Exercice 24. (\bigstar)

On considère trois v.a.r. U, V, et W, indépendantes et telles que U et Wsuivent la loi de Poisson de paramètre $\lambda > 0$, et V suit la loi de Poisson de paramètre $\mu > 0$.

On note X = U + V et Y = V + W.

- 1. Rappeler les lois de X et de Y.
- 2. a) Montrer que Cov(X,Y) existe et la calculer
 - b) En déduire le coefficient de corrélation linéaire de X et Y.

Exercice 25. $(\star\star\star)$

Soient a un entier naturel non nul, et n un entier naturel supérieur ou égal à 2. À un péage d'autoroute comportant n guichets, na voitures se présentent. Chaque conducteur choisit un guichet au hasard, de manière équiprobable. Les choix des automobilistes sont supposés indépendants entre eux. On note X_i le nombre de voitures étant passées par le guichet numéro i. On note Y la v.a.r. égale au nombre de guichets où ne se sont présentée aucune voiture.

- 1. a) Déterminer la loi, l'espérance et la variance de la v.a.r. X_i .
 - **b)** Calculer $\mathbb{V}(X_1 + X_2 + \cdots + X_n)$.
 - c) En déduire $Cov(X_i, X_j)$ où i et j sont des entiers distincts quelconques de [1, n].
- 2. Calculer le coefficient de corrélation linéaire de X_i et X_j où i et j sont des entiers distincts quelconques de [1, n]. Commenter le cas n = 2.
- 3. On note Y_i la variable de Bernoulli égale à 1 si aucune voiture n'est passée au guichet n° i, et égale à 0 sinon.
 - a) Pour tout $i \in [1, n]$, déterminer la loi de la variable Y_i , son espérance et sa variance.
 - b) Exprimer la variable Y en fonction des variables Y_1, Y_2, \ldots, Y_n .
 - c) En déduire l'espérance et la variance de Y.

Exercice 26. $(\bigstar \bigstar)$

Une urne contient N jetons numérotés 1, 2, ..., k, avec $2 \le k \le N$. Pour $i \in [\![1, k]\!]$, on note n_i le nombre de jetons portant le numéro i et $p_i = \frac{n_i}{N}$. On suppose que $0 < p_i < 1$, pour tout $i \in [\![1, k]\!]$. Soit $n \in \mathbb{N}^*$. On effectue dans cette urne n tirages successifs d'un jeton avec remise.

- 1. Pour tout $i \in [1, k]$, on note N_i la v.a.r. égale au nombre de jetons tirés portant le numéro i.
 - Déterminer la loi de N_i , son espérance et sa variance.
- 2. a) Pour $(i,j) \in [1,k]^2$ tel que $i \neq j$, déterminer la loi de $N_i + N_j$, son espérance et sa variance.
 - b) Soit $(i,j) \in [\![1,k]\!]^2$ tel que $i \neq j$. Calculer $\mathrm{Cov}(N_i,N_j)$ et vérifier que le coefficient de corrélation de (N_i,N_j) est bien entre -1 et 1. Dans quel cas vaut-il -1? Que pensez-vous de ce résultat?
- 3. a) On pose Z_n la variable prenant pour valeur le nombre de numéros qui ne sont pas sortis. Calculer, sans passer par sa loi, l'espérance $\mathbb{E}(Z_n)$ de Z_n et calculer $\lim_{n\to+\infty} \mathbb{E}(Z_n)$.
 - b) Comparer $\mathbb{P}(Z_n \geqslant 1)$ et $\mathbb{E}(Z_n)$ et montrer que $\lim_{n \to +\infty} \mathbb{P}(Z_n = 0) = 1$.

Loi d'un min, d'un max

Exercice 27. $(\bigstar \bigstar)$

On considère une urne contenant n boules numérotées de 1 à n et on tire au hasard deux boules, avec remise dans cette urne. On note X la v.a.r. égale au numéro de la première boule et Y la v.a.r. au numéro de la deuxième boule.

- a. Justifier que X et Y sont indépendantes.
- **b.** On pose $S = \max(X, Y)$. Déterminer $\mathbb{P}(S \leq k)$ puis donner la loi de S.
- c. On pose $T = \min(X, Y)$. Déterminer $\mathbb{P}(T > k)$ puis donner la loi de T

Exercice 28. (**)

On considère B et G deux v.a.r. indépendantes suivant respectivement une loi de Bernoulli $\mathcal{B}(p)$ et une loi géométrique $\mathcal{G}(p')$.

- a. Déterminer la loi de la v.a.r. BG.
- **b.** Calculer $\mathbb{E}(BG)$.

Exercice 29. $(\bigstar \bigstar)$

Soient X et Y deux variables aléatoires discrètes indépendantes.

On suppose que $X \hookrightarrow \mathcal{G}(p_1)$ et $X \hookrightarrow \mathcal{G}(p_2)$ où p_1 et p_2 sont dans]0,1[.

Notons $Z = \min(X + Y)$ et $T = \max(X, Y)$. Soit $n \in \mathbb{N}^*$.

- 1. a) Déterminer $\mathbb{P}([X > n])$.
 - b) Déterminer alors $\mathbb{P}([Z > n])$.
 - c) Comment peut-on exprimer [Z = n] en fonction d'événements de la famille $([Z > k])_{k \in \mathbb{N}}$?
 - d) En déduire $\mathbb{P}([Z=n])$ et reconnaître alors la loi suivie par Z.
- 2. a) Déterminer $\mathbb{P}([T \leq n])$ puis $\mathbb{P}([T > n])$.
 - b) Démontrer que : $\mathbb{P}([T=n]) = \mathbb{P}([T>n-1]) \mathbb{P}([T>n])$.
 - c) Soit $m \in \mathbb{N}^*$.

Démontrer que :
$$\sum_{n=1}^{m} n \mathbb{P}([T=n]) = \sum_{n=0}^{m-1} \mathbb{P}([T>n]) - m \mathbb{P}(T>m)$$
.

d) Démontrer que T admet une espérance et la calculer.

Exercice 30. $(\bigstar \bigstar)$

Trois personnes a_1, a_2, a_3 entrent à l'instant 0 dans un bureau de poste qui ne comporte que deux guichets. Les personnes a_1 et a_2 peuvent être servies immédiatement alors que a_3 doit attendre qu'un guichet soit libéré pour être servie. On supposera que le temps est mesuré par des nombres entiers avec une unité fixée.

Soit $p \in]0,1[$. On suppose que pour $i \in \{1,2,3\}$ le temps de service de la personne a_i est une v.a.r. X_i dont la loi est donnée par : pour tout $k \in \mathbb{N}$, $\mathbb{P}(X_i = k) = (1-p).p^k$. On suppose que les v.a.r. X_1 , X_2 et X_3 sont indépendantes.

On désigne par Y l'instant de première sortie (celle de a_1 ou a_2) qui est aussi l'instant où a_3 commence à se faire servir.

Enfin, Z désigne l'instant de sortie de a_3 .

- 1. a) Exprimer l'événement $(Y \ge k)$ à l'aide des v.a.r. X_1 et X_2 .
 - **b)** Calculer $\mathbb{P}(Y \ge k)$ pour tout entier $k \ge 0$.
 - c) Déterminer alors la loi de Y.

- 2. a) Exprimer Z en fonction de Y et X_3 .
 - b) Déterminer la loi de Z.
- 3. Calculer le temps moven passé par a_3 à la poste.

Exercice 31. $(\bigstar \bigstar)$

Soit $(X_i)_{i\in\mathbb{N}}$ une suite de v.a.r. indépendantes suivant la loi de Bernoulli de paramètre p. Soit $Y_i = X_i X_{i+1}$ et $S_n = \sum_{i=1}^n Y_i$.

• Pour tout $i \in \mathbb{N}$, déterminer la loi de Y_i puis calculer $\mathbb{E}(S_n)$.

Formule de probabilités composées

Exercice 32. $(\bigstar \bigstar)$

Une urne contient n boules noires (avec $n \in \mathbb{N}^*$) et deux boules blanches. On effectue dans cette urne des tirages successifs d'une boule, sans remise. On note:

- × X la v.a.r. égale au nombre de tirages nécessaires pour obtenir la première boule blanche:
- × Y la v.a.r. égale au nombre de tirages nécessaires pour obtenir la seconde boule blanche:
- \times pour tout $i \in [1, n+2]$, N_i (resp. B_i) l'événement « le $i^{\text{ième}}$ tirage amène une boule noire (resp. blanche) ».
- 1. a) Préciser $X(\Omega)$. Décrire, pour tout $k \in X(\Omega)$, l'événement (X = k) à l'aide des événements N_i et B_i .
 - b) Montrer que pour tout $k \in X(\Omega)$, $P(X = k) = \frac{2(n+2-k)}{(n+1)(n+2)}$.
 - c) Calculer $\mathbb{E}(X)$.
- 2. a) Déterminer $Y(\Omega)$.
 - b) Déterminer la loi couple (X,Y).
 - c) En déduire la loi de Y.
 - d) Calculer l'espérance de Y.
- 3. Calculer la covariance de (X,Y). Commenter son signe.

Espérance conditionnelle

Exercice 33. $(\bigstar \bigstar)$

Soient X et Y deux v.a.r. définies sur un même espace probabilisé, telles que $X(\Omega) = Y(\Omega) = [1, n], \text{ avec } n \in \mathbb{N}^*.$

Pour tout $k \in [1, n]$, on appelle espérance conditionnelle de Y sachant l'événement [X = k] réalisé le réel $\mathbb{E}_{[X = k]}(Y)$ défini par :

$$\mathbb{E}_{[X=k]}(Y) = \sum_{i=1}^{n} i \, \mathbb{P}_{[X=k]}([Y=i])$$

1. Démontrer l'égalité :

$$\mathbb{E}(Y) = \sum_{k=1}^{n} \mathbb{E}_{[X=k]}(Y) \ \mathbb{P}([X=k])$$

On dispose de n urnes $U_1, \ldots U_n$. Pour tout $k \in [1, n]$, l'urne U_k contient k boules numérotées de 1 à k.

On choisit une urne au hasard, puis on tire une boule dans cette urne.

On note X la v.a.r. égale au numéro de l'urne choisie et Y la v.a.r. égale au numéro de la boule tirée.

- 2. Quelle est la loi de X?
- 3. a) Pour tout $k \in [1, n]$, donner la loi conditionnelle de Y sachant [X = k]. Préciser l'espérance conditionnelle de Y sachant [X = k], pour tout $k \in [\![1,n]\!]$
 - b) Déduire de la question 1 l'espérance de Y.
- 4. Déterminer la loi conjointe du couple (X, Y).
- 5. a) Déterminer la loi de Y sous forme d'une somme.
 - **b)** Déterminer la variance $\mathbb{V}(Y)$ de Y en fonction de n.