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CH XIII (2/2) : Endomorphismes d'un espace
euclidiens - Endomorphismes autoadjoints

I. Endomorphismes auto-adjoints

I.1. Notion d’endomorphisme auto-adjoint
I.1.a) Définition
Définition

Soit (E (- >) un espace euclidien.

Soit f € Z(E).

o On dit que f est auto-adjoint (ou symétrique) si :
V(z,y) € B2, (f(z),y) = (2, f(y))
« On note .(F) I'ensemble des endomorphismes auto-adjoints de E.

Remarque

« Dans un espace euclidien, on peut démontrer que pour tout endomorphisme
f e Z(E), il existe un unique endomorphisme g € Z(E) tel que :

V(z,y) € B2, (f(z),y) = (z,9(y))

Dans ce cas, on dit que f et g sont adjoints I'un de 'autre ou tout sim-
plement que g est 'adjoint de f. On note généralement f* I’adjoint d’'un
endomorphisme f.

o On comprend dés lors beaucoup mieux le terme d’endomorphisme « auto-
adjoint ». Un endomorphisme f € Z(F) est auto-adjoint s’il est son propre
adjoint.

Exemple

Considérons (E (e >) un espace euclidien.

o L’endomorphisme 0 ¢ (g est auto-adjoint. Cela démontre déja que le carac-
tére auto-adjoint n’implique pas la propriété d’isométrie (7 (E) ¢ O(E)).

o L’endomorphisme idg est auto-adjoint.

o De maniére générale, pour tout A € R, 'endomorphisme A - idg est auto-
adjoint (si A # %1, on démontre de nouveau : . (E) ¢ O(E)).

o Les puissances d’'un endomorphisme auto-adjoint sont auto-adjointes.

Exercice

Soit (E, (-, )) un espace euclidien.

Soit (/.9) € (#(8))"
Démontrer : foge S (E) & fog=gof.

I.2. Lien entre endomorphismes auto-adjoints et matrices sy-
métriques

Théoréme 1.

Soit (E, (-, >) un espace euclidien.
On note A une base orthonormale de E.

Soit f € L(F).

1. | L’endomorphisme f est auto-adjoint

< La matrice Matg(f) est symétrique

(f est auto-adjoint si et seulement si sa matrice dans toute base ortho-
normée est symétrique réelle)

2. a) L’application ® suivante :
o . Z(E) — M,(R)
f = Matg(f)

est un isomorphisme. Elle induit de plus un ismorphisme de .7 (E) sur
Zn(R), ensemble des matrices symétriques carrées d’ordre n.

n(n+1)

b) | dim (S (E)) = 5
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Démonstration.

1. (=) Supposons : f € S (E).

o Comme Z est une base orthonormée de F, alors pour tout u € E :

u = (u,e1) - ex + ... + (u,en) - e,

En particulier, pour tout j € [1,n] :

f(ej) = <f(€j)ael> e+ ...+ <f(€j)7en> © Cn

« Rappelons par ailleurs : Matz(f) = <Mat@ (f(e1)) ... Maty (f(en)))

Ainsi :
Mata(f) = ((Fle)er)), .
= ((enste))) . Corfesm)
— ( f(ei)’ej>)1<i,j<n gz;a%zéme du produit
= (Matu(r) ) :
Remarque

1. Pour toute matrice symétrique S € .7,,(R), 'endomorphisme de R™ cano-
niquement associé a S est auto-adjoint (relativement au produit scalaire
canonique).

2. On retrouve que les homothéties et les projections/symétries orthogonales
sont des endomorphismes auto-adjoints.

1.3. Exemple d’endomorphismes auto-adjoints :
teurs et symétries orthogonales

les projec-

I.3.a) Rappel sur les projecteurs et les symétries

Théoréme 2.
Soit E un K-espace vectoriel.
On suppose que F' et G sont des sev supplémentaires dans £ : E = F & G.
— pour tout u € E, il existe un unique couple (up,ug) € F x G tel que :

U =Uur +ug

o On appelle projecteur sur F' paral-
lelement & G Dapplication :

o On appelle symétrie par rapport a
F parallélement o G Uapplication :

p : F — FE s
u = ugp

F — F

U = U —ug

Dans ce cas : Dans ce cas :

x F Ker(p — idg) x F = Ker(s—idg)
= {z e E|pr) =z} = {zek|sx)=a}
= Imlp) x G = Ker(s+idg)

x G = Ker(p) = {zel|s(x)=—x}

= {z e E|p)=0g}

« Caractérisation : pour tout p € ZL(E) et tout s € L(F) :

p est un projecteur < pop=7p

s est une symétrie < sos=Iidg
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o On appelle projecteur orthogonal sur F' le projecteur sur F paralléle- 1.3.b) Les projecteurs / symétries auto-adjoint(e)s sont les projec-
ment o F-. Ainsi, pour tout projecteur p € £ (E) : teurs / symeétries orthogonal(e)s

Théoréme 3.

L’application p est un projecteur orthogonal Soit (E, () >) un, espace euclidien.

& Im(p) et Ker(p) sont orthogonauz Notons n = dim(FE). On suppose n € N*.

& Ve Ker(p),Vy € Im(p), (z,y) =0 Soit B une base orthonormée de E.
Soit p € L(E) un projecteur et soit s € L (E) une symétrie.

o On appelle symétrie orthogonale par rapport a F' la symétrie par
rapport & F parallélement o F-.
Ainsi, pour toute symétrie s € L (E) : 1.| & Matg(p) € Z(R) et (Matg(p))? = Matg(p)

L’application p est un projecteur orthogonal

o o < L’appliaction p est un endomorphisme auto-adjoint
L’application s est une symétrie orthogonale

< Ker (5 — idE) et Ker (s + idE) sont orthogonauz L’application s est une symétrie orthogonale
& Vo € Ker (s —idp),Vy € Ker (s +idp), (z,y) =0 2.| & Matg(s)e.Z(R) et (Matg(s))? =1,

< L’application s est un endomorphisme auto-adjoint
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I.4. Structure de I’ensemble des endomorphismes auto-adjoints I.5. Théoréme spectral

Théoréme 4.
Soit (E, (-, >) un espace euclidien.

o L’ensemble ./ (E) est un sous-espace vectoriel de £ (E).

I.5.a) Eléments propres d’un endomorphisme auto-adjoint
Théoréme 5.
Enoncé dans le cas des endomorphismes

Soit (E, (-,-)) un espace euclidien.

Soit f € S (E) un endomorphisme auto-adjoint de E.

Soit F' un sous-espace vectoriel de E.

F est un sous-espace Ft est un sous-espace
vectoriel de E stable par f vectoriel de E stable par f

2. Les valeurs propres (complexes) de f sont toutes réelles.

En particulier, si dim(E) = n € N*, alors tout endomorphisme auto-
adjoint f admet n valeurs propres comptées avec leur multiplicité.

3. Les sous-espaces propres de f sont 2 a 2 orthogonauz.

Enoncé dans le cas matriciel
Soit S € S (R) une matrice symétrique réelle.

Notons f I’endomorphisme canoniquement associé a S. Autrement dit :

o X — SX
'//n,l(R) — j/n,l(R)

F' est un sous-espace vectoriel de o FL est un sous-espace vectoriel
My (R) stable par f de My,1(R) stable par f

2. Les valeurs propres (complexes) de S sont toutes réelles.

En particulier, toute matrice symétrique réelle de M, (R) admet n valeurs
propres comptées avec leur multiplicité.

3. Les sous-espaces propres réels de S sont 2 a 2 orthogonauzx (pour le produit
scalaire canonique).
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Démonstration. On en conclut :| AX' X =AX X |ou encore : (/\ — X) X'X=0.
1. (=) Supposons que F est stable par f.

Démontrons que F- est stable par f. Il s’agit de démontrer :
Vo e FY f(z) e F* X'x =

Soit 2 € F+. Démontrons f(x) € F*. Il s’agit donc de démontrer :
vy e F, {f(z),y) = 0.

De plus :

-

s
Il
N

T; T;

| ;|2

Il

s
I
—

Soit y € F. Alors : S 0 (comme X est un vecteur propre, X # 0.4,.1(C)
) o et l'un au moins de ses coefficients est non nul)
(f(x),y) = (z,f(y) (car f est un endomorphisme auto-adjoint)
_ 0 (car x € F+ et f(y) € F puisque y € F Donc : A — A = 0. Ainsi : A = \ c’est-a-dire : A € R.
et I stable par f) 3. Soient \ et p deux valeurs propres distinctes de f.
Dot : f(z) € F*. Soit x € Ker(f — Xidg) et soit y € Ker(f — pidg). Alors :
=) On suppose G = F- stable par f.
(+) On suppose G = - stable par f. o) = (@)
D’apreés le point précédent, G— = (F ) = F est stable par f.
2. I’endomorphisme f admet au moins une valeur propre complexe A (car = (= fy)
X#, polynome de degré dim(FE), posséde au moins une racine complexe). = p(z,y)
Soit £ une base de E. Soit & un vecteur propre associé a la valeur propre
\eC. Ainsi : (A — p) (x,y) = 0. Donc : (z,y) =0 (car X # p).
Notons alors S = Matgz(f) et X = Matg(x) (et X la matrice colonne Les sous-espaces propres de f sont donc orthogonaux. 0
conjuguée). Alors :
x d’une part : I.5.b) Théoréme spectral

X'sx = x°' ()\ X) (car SX = XX par définition de X ) Théoréme 6.
Enoncé dans le cas des endomorphismes

= AX'X
Lot . Soit (E, (-, >) un espace euclidien.
autre part :
) — P T Soit f € S (F) un endomorphisme auto-adjoint.
X SX = X X =M t Stri
5 s (car § atap(f) est symétrique) Soit By une base orthonormée de E.
= <SY)TX Alors, f est diagonalisable (dans R) dans une base orthonormée.
. (car S =S puisque S Autremefzt dit, il existe une BON 2 telle que Matg(f) est une matrice dia-
= (SX) X ) j gonale réelle.
est une matrice réelle)
—\T
= (AX X M =P M P P On(R
atg,(f) = Payz x Matg(f) X Pz, avec Pgy,z € On(R)
= \X' X
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Enoncé dans le cas matriciel
Soit S € ./, (R).
Alors il existe :
x une matrice D € #,(R) diagonale,
x une matrice P € Oy (R),

telles que :| S =P DP”

Remarque

o L’endomorphisme f est auto-adjoint pour le produit scalaire induit sur

1
<Vect (a)) , donc par hypothése de récurrence, il existe une base or-

Si f € /(F) est un endormorphisme auto-adjoint, alors f est ortho-diagonalisable.

Cela signifie qu’il existe une base orthonormée A = (ey,...,e,) telle que
Matz(f) est diagonale réelle. Cette base est, par définition, constituée de
vecteurs propres de f. Ainsi, pour tout i € [1,n], le vecteur e; est associé a
une valeur propre notée \; (il est & noter que ces valeurs propres ne sont pas
forcément distinctes).

Démonstration.

On démontre par récurrence : Vn € N*| 2 (n)

ot #Z(n) : pour tout espace vectoriel E de dimension n, toute application

f € Z(F) est diagonalisable dans une base orthonormée.

» Initialisation : évident.

» Hérédité : soit n € N*.
Supposons & (n) et démontrons Z(n + 1) (c’est-a-dire pour tout espace
vectoriel E de dimension n+ 1, tout f € .7(E) est diagonalisable en base
orthonormeée).
Soit E un espace vectoriel tel que : dim(E) = n + 1. Soit f € .7 (E).

o Comme f est auto-adjoint, alors il admet une valeur propre réelle A.
Soit a un vecteur propre de f associé a la valeur propre A.

o On sait que :
x espace vectoriel Vect (a) est stable par f,

x l’endomorphisme f est auto-adjoint.

1
On en déduit que <Vect (a)> est stable par f.

On peut ainsi définir f 'endomorphisme induit par f sur (Vect (a))

1
thonormale (eq,...,e,) de (Vect (a)) constituée de vecteurs propres
de f
o La famille (eq, ..., epn, ﬁ) est alors une base orthonormale de F, et est
constituée de vecteurs propres de f.
D'ou Z(n+1).
Ainsi, par principe de récurrence : VYn € N*| Z(n). 0
Exercice

Soit (E, (-, >) un espace euclidien.
On note n = dim(F) et on suppose n € N*.

Soit f € Z(E). On note A; < ... < A, les valeurs propres de f, présentes
avec leur multiplicité.

Démontrer : Vo € E, A\ ||z]|? < (u(z),z) < A\ ||z]%

I.6. Endomorphisme auto-adjoint positif et défini positif

I.6.a) Définition

Définition
A) Cas des endomorphismes
Soit (E, (-,-)) un espace euclidien.

Soit f € S (E).
e On dit que f est :
Ve € E, (z,f(z)) > 0

x positif si :

Ve e E, (x,f(z)) > 0
x défini positif si : { (. 1))

Ve e E, (z,f(z)) =0 = z=0g

« On note .t (FE) I'ensemble des endomorphismes auto-adjoints positifs.

« On note .t1(F) I'ensemble des endomorphismes auto-adjoints définis
positifs.
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B) Cas des matrices carrées

Soit A € .7 (R).

e On dit que A est :

x positivesi:| VX € #,1(R), XTAX > 0

x définie positive si :

VX € My (R),
VX € My (R),

XTAX >0
XTAX =0 = XZO//{,LJ(R)

« On note ., (R) 'ensemble des matrices symétriques positives.

« On note .7,/ T(R) l'ensemble des matrices symétriques définies posi-

tives.

C) Lien entre les deux

Soit % une base orthonormée de E.

Soit f € .7 (E).

f auto-adjoint positif <

Matg(f) est une matrice
symétrique positive

f auto-adjoint défini positif <

Matg(f) est une matrice
symétrique définie-positive

I.6.b) Caractérisation du caractére (défini) positif par signe des
valeurs propres

Théoréme 7.

A) Cas des endomorphismes

Soit f € .S (E).

1. | L’endomorphisme f est positif < Sp(f) C Ry

Autrement dit, ’endomorphisme f auto-adjoint est positif si et seule-
ment si toutes ses valeurs propres sont positives.

2. | L’endomorphisme f est défini positif < Sp(f) C R}

Autrement dit, l’endomorphisme f auto-adjoint est défini-positif si et
seulement si toutes ses valeurs propres sont strictement positives.

B) Cas des matrices carrées

Soit A € .Zp(R).

1. | La matrice A est positive < Sp(A) C Ry

Autrement dit, la matrice A est positive si et seulement si toutes ses
valeurs propres sont positives.

2. | La matrice A est définie positive < Sp(A) C R’

Autrement dit, la matrice A est positive si et seulement si toutes ses
valeurs propres sont strictement positives.
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Démonstration.
1. On procéde par double implication.

(=) Supposons que I"'endomorphisme auto-adjoint f est positif.
Soit A € Sp(f). Soit & un vecteur propre de f associé a la valeur
propre .

o Comme f est auto-adjoint positif : (z, f(x)) > 0.
e Deplus : (z, f(z)) = (z,\z) = Xz, z) = \|]z|]°.
On en déduit : A||z||? = 0. Or, comme x # Og (c’est un vecteur

propre de f), alors : ||z|| # 0.
Finalement :

Mz[|?>0 et |z|>>0 donc A > 0

(<) Supposons : Sp(f) C Ry.

o Notons Ay, ..., A, les valeurs propres (pas forcément distinctes) de
I’endomorphisme f.

Comme Sp(f) C Ry, alors : Vi € [1,n], A; > 0.

o Comme I’endomorphisme f est auto-adjoint, alors, par théoréme
spectral, il existe une base orthonormée % = (e, ..., e,) constituée
de vecteurs propres de f. Plus précisément, pour tout i € [1,n], le
vecteur e; est un vecteur propre associé a la valeur propre \;.

7
o Soit z € E. Alors il existe (z1,...,2,) € K" tel que: x = ) z;-e;.

i=1
Par linéarité de f :

@) = f(éxe) = S fle) = 3 hwi-e

On en déduit :
<x,f(x)> = <:1 x; - 6i;j§ Ajxj - ej>

(par linéarité a

gauche de (-,-))

(par linéarité a
droite de (-,-))

=1 7j=1
n

= Y oz (Nizi)
i=1

= S N () =0

Donc I’endomorphisme auto-adjoint f est positif.

2. On procéde par double implication.
(=) Supposons que I’endomorphisme auto-adjoint f est défini positif.

Soit A € Sp(f). Soit & un vecteur propre de f associé a la valeur
propre .

« En particulier, 'endomorphisme auto-adjoint f est positif. Comme
vu dans le point 1. :

(x,f(x)) = (z, z) =Az,z) = Mz||> >0 et |z|*>0 et A

WV
o

« Ici, on suppose que 'endomorphisme auto-adjoint f est défini po-
sitif. Ainsi :

(, f(x)) > 0

Finalement :

(puisque = # Og)

Mz|?> > 0 et [z]*>0
On en conclut : A > 0.
Ainsi : Sp(f) C R7.
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(<

) Supposons : Sp(f) C R%.

On reprend les notations du point 1 :
x AL, ..., A les valeurs propres (pas forcément distinctes) de f,

x B = (e1,...,ey) base orthonormée constituée de vecteurs propres
de f et telle que pour tout i € [1,n], e; est un vecteur propre
associé a la valeur propre \;.

o Comme : Sp(f) C R% C R, alors d’aprés 1., on sait déja que
I’endomorphisme auto-adjoint f est positif.

o Démontrons qu’il est défini-positif. Soit x € E.
Supposons : (z, f(x)) = 0. Démontrons : x = 0p.

x Comme z € E, alors il existe (z1,...,2,) € K" tel que : z =
n
Z €T; - €;.
i=1

Alors, comme en 1. : (z, f(x)) = > N\ (QI:Z)2
=1

x Or, par hypothése : (x, f(z)) = 0. Don i i (xl)2 =0.
O

Comme, pour tout ¢ € [1,n], A; > 0, on en déduit :

Vi € [[1,’0]], A (371)2:0
(car Vi € [1,n], )\ >0

) 2
donc  Vie [1,n], (z;)"=0 puisque Sp(f) C RY)

donc  Vie[l,n], ;=0

n n
Finalement : z = > z;- ¢, = > 0-¢; = 0p.
=1 =1

L’endomorphisme auto-adjoint f est donc défini positif. O

Exemple
o Soit A € 4, (R), alors AT A et A AT sont symétriques positives.

« Soit A € GL,(R), alors A” A et A AT sont symétriques définies positives.

A RETENIR | (aspect théorique)

« Cet exercice est une excellente illustration de beaucoup d’exercices sur les
endomorphismes auto-adjoints. Plus précisément :

x pour le sens direct, on doit démontrer une propriété sur le spectre de
f c’est-a-dire sur chacune des valeurs propres A de f. Pour ce faire, on
introduit  un vecteur propre associé a la valeur propre A et on travaille
sur ce vecteur propre.

x pour le sens réciproque, on doit démontrer une propriété vérifiée pour
tout z € E. Pour ce faire, comme f est auto-adjoint, on se sert du fait
que f est ortho-diagonalisable afin de pouvoir travailler dans une base
orthonormée % de E constituée de vecteurs propres de f.

On rédigera ce point comme suit :

« Notons Ay, ..., A, les valeurs propres (pas forcément distinctes)
de 'endomorphisme f.

e Comme l'endomorphisme f est auto-adjoint, alors, par théo-
réme spectral, il existe une base orthonormée £ = (eq,...,ey)
constituée de vecteurs propres de f.

Plus précisément, pour tout i € [1,n], le vecteur e; est un
vecteur propre associé a la valeur propre A;.

Il faut retenir ces deux idées fondamentales dans les exercices sur les en-
domorphismes auto-adjoints.
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A RETENIR | (aspect calculatoire) « On peut aussi effectuer ce calcul comme suit :

Soit E un espace vectoriel de dimension finie n € N*, (x, f(x))y = (x, f(x)z (car % est une BON)

Soit f un endomorphisme auto-adjoint de E.

On introduit les notations A1, ..., A, (valeurs propres pas forcément dis- (Matg(2))" x Ma ”g(f(x))

tinctes de f) et B = (ey,...,e,) base orthonormée constituée de vecteurs = (Matg(z))" x Matg(f) x Matg(x

propres de f. (par définition de A,

o Dans les exercices, il est classique d’avoir a calculer la quantité (z, f(x)) = (v1 ... ) base de diagonalisation
(ot z € E). Avec les notations précédentes et en notant (z1,...,z,) € R" de l’endomorphisme f)

les coordonnées de = dans % : N

(1) = (Lo 5 nm ) = i

o Ce dernier calcul met en avant un calcul souvent réalisé lorsque ’exercice

_ i 2 < i ;- e]> (par linéarité a demande 1’étude d’une matrice symétrique réelle S (plutot qu’un endomor-

j=1 gauche de (-,-)) phisme auto-adjoint).
Lorsque c’est le cas, il est classique d’effectuer le calcul X* S X (pour

o nooo (par linéarité a X e Mp1(R)).
= Y ( PORVES <€uey>> droite de (-,-)) o

.
[y

=t 7=t Comme S est une matrice symétrique réelle, S est ortho-diagonalisable.
n n Autrement dit, il existe :
- LT\ i  PEOL®),
n A1
= Y ox (Nzi) x D= € M,(R),
i=1 N
_ i A (7 )2 > 0 telles que S = PDPT. Alors :
1=
X*SX = X' (PDPT)X
n
On retiendra cette expression : | Vz € E, (z, f(z)) = > A\ (:cl)Q _ (PTX)T D PTX
=1
T (en notant Y le vecteur
B (Y) by tel que X = PY)
& 2 (en notant (y1,...,yn) les
N l; A (1) coefficients de Y')
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