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CH XIII (2/2) : Endomorphismes d’un espace
euclidiens - Endomorphismes autoadjoints

I. Endomorphismes auto-adjoints

I.1. Notion d’endomorphisme auto-adjoint

I.1.a) Définition

Définition

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit f ∈ L (E).

• On dit que f est auto-adjoint (ou symétrique) si :

∀(x, y) ∈ E2, ⟨f(x), y⟩ = ⟨x, f(y)⟩

• On note S (E) l’ensemble des endomorphismes auto-adjoints de E.

Remarque

• Dans un espace euclidien, on peut démontrer que pour tout endomorphisme
f ∈ L (E), il existe un unique endomorphisme g ∈ L (E) tel que :

∀(x, y) ∈ E2, ⟨f(x), y⟩ = ⟨x, g(y)⟩

Dans ce cas, on dit que f et g sont adjoints l’un de l’autre ou tout sim-
plement que g est l’adjoint de f . On note généralement f∗ l’adjoint d’un
endomorphisme f .

• On comprend dès lors beaucoup mieux le terme d’endomorphisme « auto-
adjoint ». Un endomorphisme f ∈ L (E) est auto-adjoint s’il est son propre
adjoint.

Exemple
Considérons

(
E, ⟨·, ·⟩

)
un espace euclidien.

• L’endomorphisme 0L (E) est auto-adjoint. Cela démontre déjà que le carac-
tère auto-adjoint n’implique pas la propriété d’isométrie (S (E) ̸⊂ O(E)).

• L’endomorphisme idE est auto-adjoint.
• De manière générale, pour tout λ ∈ R, l’endomorphisme λ · idE est auto-

adjoint (si λ ̸= ±1, on démontre de nouveau : S (E) ̸⊂ O(E)).
• Les puissances d’un endomorphisme auto-adjoint sont auto-adjointes.

Exercice
Soit

(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit (f, g) ∈
(
S (E)

)2
.

Démontrer : f ◦ g ∈ S (E) ⇔ f ◦ g = g ◦ f .

I.2. Lien entre endomorphismes auto-adjoints et matrices sy-
métriques

Théorème 1.
Soit

(
E, ⟨·, ·⟩

)
un espace euclidien.

On note B une base orthonormale de E.
Soit f ∈ L (E).

1. L’endomorphisme f est auto-adjoint ⇔ La matrice MatB(f) est symétrique

(f est auto-adjoint si et seulement si sa matrice dans toute base ortho-
normée est symétrique réelle)

2. a) L’application Φ suivante :

Φ : L (E) → Mn(R)
f 7→ MatB(f)

est un isomorphisme. Elle induit de plus un ismorphisme de S (E) sur
Sn(R), ensemble des matrices symétriques carrées d’ordre n.

b) dim
(
S (E)

)
=

n (n+ 1)

2
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Démonstration.

1. (⇒) Supposons : f ∈ S (E).

• Comme B est une base orthonormée de E, alors pour tout u ∈ E :

u = ⟨u, e1⟩ · e1 + . . . + ⟨u, en⟩ · en

En particulier, pour tout j ∈ J1, nK :

f (ej) = ⟨f (ej) , e1⟩ · e1 + . . . + ⟨f (ej) , en⟩ · en

• Rappelons par ailleurs : MatB(f) =
(
MatB

(
f(e1)

)
. . . MatB

(
f(en)

))
.

Ainsi :

MatB(f) =
(〈

f (ej) , ei

〉)
1⩽i,j⩽n

=
(〈

ej , f (ei)
〉)

1⩽i,j⩽n
(car f ∈ S (E))

=
(〈

f (ei) , ej

〉)
1⩽i,j⩽n

(par symétrie du produit
scalaire)

=
(
MatB(f)

)t
Remarque

1. Pour toute matrice symétrique S ∈ Sn(R), l’endomorphisme de Rn cano-
niquement associé à S est auto-adjoint (relativement au produit scalaire
canonique).

2. On retrouve que les homothéties et les projections/symétries orthogonales
sont des endomorphismes auto-adjoints.

I.3. Exemple d’endomorphismes auto-adjoints : les projec-
teurs et symétries orthogonales

I.3.a) Rappel sur les projecteurs et les symétries

Théorème 2.

Soit E un K-espace vectoriel.

On suppose que F et G sont des sev supplémentaires dans E : E = F ⊕G.
↪→ pour tout u ∈ E, il existe un unique couple (uF , uG) ∈ F ×G tel que :

u = uF + uG

• On appelle projecteur sur F paral-
lèlement à G l’application :

p : E → E

u 7→ uF

Dans ce cas :

× F = Ker(p− idE)

= {x ∈ E | p(x) = x}
= Im(p)

× G = Ker(p)

= {x ∈ E | p(x) = 0E}

• On appelle symétrie par rapport à
F parallèlement à G l’application :

s : E → E

u 7→ uF − uG

Dans ce cas :

× F = Ker(s− idE)

= {x ∈ E | s(x) = x}

× G = Ker(s+ idE)

= {x ∈ E | s(x) = −x}

• Caractérisation : pour tout p ∈ L (E) et tout s ∈ L (E) :

p est un projecteur ⇔ p ◦ p = p s est une symétrie ⇔ s ◦ s = idE
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• On appelle projecteur orthogonal sur F le projecteur sur F parallèle-
ment à F⊥. Ainsi, pour tout projecteur p ∈ L (E) :

L’application p est un projecteur orthogonal

⇔ Im(p) et Ker(p) sont orthogonaux

⇔ ∀x ∈ Ker(p), ∀y ∈ Im(p), ⟨x, y⟩ = 0

• On appelle symétrie orthogonale par rapport à F la symétrie par
rapport à F parallèlement à F⊥.
Ainsi, pour toute symétrie s ∈ L (E) :

L’application s est une symétrie orthogonale

⇔ Ker
(
s− idE

)
et Ker

(
s+ idE

)
sont orthogonaux

⇔ ∀x ∈ Ker
(
s− idE

)
,∀y ∈ Ker

(
s+ idE

)
, ⟨x, y⟩ = 0

I.3.b) Les projecteurs / symétries auto-adjoint(e)s sont les projec-
teurs / symétries orthogonal(e)s

Théorème 3.

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Notons n = dim(E). On suppose n ∈ N∗.

Soit B une base orthonormée de E.

Soit p ∈ L (E) un projecteur et soit s ∈ L (E) une symétrie.

1.

L’application p est un projecteur orthogonal

⇔ MatB(p) ∈ Sn(R) et (MatB(p) )2 = MatB(p)

⇔ L’appliaction p est un endomorphisme auto-adjoint

2.

L’application s est une symétrie orthogonale

⇔ MatB(s) ∈ Sn(R) et (MatB(s) )2 = In

⇔ L’application s est un endomorphisme auto-adjoint
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I.4. Structure de l’ensemble des endomorphismes auto-adjoints

Théorème 4.

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

• L’ensemble S (E) est un sous-espace vectoriel de L (E).

I.5. Théorème spectral

I.5.a) Éléments propres d’un endomorphisme auto-adjoint

Théorème 5.
Énoncé dans le cas des endomorphismes

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit f ∈ S (E) un endomorphisme auto-adjoint de E.

Soit F un sous-espace vectoriel de E.

1.
F est un sous-espace

vectoriel de E stable par f
⇔ F⊥ est un sous-espace

vectoriel de E stable par f

2. Les valeurs propres (complexes) de f sont toutes réelles.

En particulier, si dim(E) = n ∈ N∗, alors tout endomorphisme auto-
adjoint f admet n valeurs propres comptées avec leur multiplicité.

3. Les sous-espaces propres de f sont 2 à 2 orthogonaux.

Énoncé dans le cas matriciel

Soit S ∈ Sn(R) une matrice symétrique réelle.

Notons f l’endomorphisme canoniquement associé à S. Autrement dit :

f : X 7→ SX

Mn,1(R) → Mn,1(R)

1.
F est un sous-espace vectoriel de

Mn,1(R) stable par f
⇔ F⊥ est un sous-espace vectoriel

de Mn,1(R) stable par f

2. Les valeurs propres (complexes) de S sont toutes réelles.

En particulier, toute matrice symétrique réelle de Mn(R) admet n valeurs
propres comptées avec leur multiplicité.

3. Les sous-espaces propres réels de S sont 2 à 2 orthogonaux (pour le produit
scalaire canonique).

4



PSI

Démonstration.
1. (⇒) Supposons que F est stable par f .

Démontrons que F⊥ est stable par f . Il s’agit de démontrer :

∀x ∈ F⊥, f(x) ∈ F⊥

Soit x ∈ F⊥. Démontrons f(x) ∈ F⊥. Il s’agit donc de démontrer :
∀y ∈ F , ⟨f(x), y⟩ = 0.

Soit y ∈ F . Alors :

⟨f(x), y⟩ = ⟨x, f(y)⟩ (car f est un endomorphisme auto-adjoint)

= 0
(car x ∈ F⊥ et f(y) ∈ F puisque y ∈ F
et F stable par f)

D’où : f(x) ∈ F⊥.
(⇒) On suppose G = F⊥ stable par f .

D’après le point précédent, G⊥ =
(
F⊥)⊥ = F est stable par f .

2. L’endomorphisme f admet au moins une valeur propre complexe λ (car
χf , polynôme de degré dim(E), possède au moins une racine complexe).
Soit B une base de E. Soit x un vecteur propre associé à la valeur propre
λ ∈ C.
Notons alors S = MatB(f) et X = MatB(x) (et X la matrice colonne
conjuguée). Alors :
× d’une part :

X
T
S X = X

T (
λX

)
(car SX = λX par définition de X)

= λX
T
X

× d’autre part :

X
T
S X = X

T
ST X (car S = MatB(f) est symétrique)

=
(
S X

)T

X

=
(
S X

)T

X
(car S = S puisque S
est une matrice réelle)

=
(
λX

)T

X

= λX
T
X

On en conclut : λX
T
X = λX

T
X ou encore :

(
λ− λ

)
X

T
X = 0.

De plus :

X
T
X =

n∑
i=1

xi xi

=
n∑

i=1
|xi |2

> 0
(comme X est un vecteur propre, X ̸= 0Mn,1(C)
et l’un au moins de ses coefficients est non nul)

Donc : λ− λ = 0. Ainsi : λ = λ c’est-à-dire : λ ∈ R.

3. Soient λ et µ deux valeurs propres distinctes de f .
Soit x ∈ Ker(f − λidE) et soit y ∈ Ker(f − µidE). Alors :

λ ⟨x, y⟩ = ⟨f(x), y⟩

= ⟨x, f(y)⟩

= µ ⟨x, y⟩

Ainsi : (λ− µ) ⟨x, y⟩ = 0. Donc : ⟨x, y⟩ = 0 (car λ ̸= µ).
Les sous-espaces propres de f sont donc orthogonaux.

I.5.b) Théorème spectral

Théorème 6.
Énoncé dans le cas des endomorphismes

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit f ∈ S (E) un endomorphisme auto-adjoint.

Soit B0 une base orthonormée de E.

Alors, f est diagonalisable (dans R) dans une base orthonormée.
Autrement dit, il existe une BON B telle que MatB(f) est une matrice dia-
gonale réelle.

MatB0(f) = PB0,B ×MatB(f)× PB,B0 avec PB0,B ∈ On(R)
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Énoncé dans le cas matriciel
Soit S ∈ Sn(R).

Alors il existe :
× une matrice D ∈ Mn(R) diagonale,
× une matrice P ∈ On(R),

telles que : S = P DP T .

Remarque
Si f ∈ S (E) est un endormorphisme auto-adjoint, alors f est ortho-diagonalisable.
Cela signifie qu’il existe une base orthonormée B = (e1, . . . , en) telle que
MatB(f) est diagonale réelle. Cette base est, par définition, constituée de
vecteurs propres de f . Ainsi, pour tout i ∈ J1, nK, le vecteur ei est associé à
une valeur propre notée λi (il est à noter que ces valeurs propres ne sont pas
forcément distinctes).

Démonstration.
On démontre par récurrence : ∀n ∈ N∗, P(n)
où P(n) : pour tout espace vectoriel E de dimension n, toute application
f ∈ S (E) est diagonalisable dans une base orthonormée.
▶ Initialisation : évident.
▶ Hérédité : soit n ∈ N∗.

Supposons P(n) et démontrons P(n + 1) (c’est-à-dire pour tout espace
vectoriel E de dimension n+1, tout f ∈ S (E) est diagonalisable en base
orthonormée).
Soit E un espace vectoriel tel que : dim(E) = n+ 1. Soit f ∈ S (E).
• Comme f est auto-adjoint, alors il admet une valeur propre réelle λ.

Soit a un vecteur propre de f associé à la valeur propre λ.
• On sait que :

× l’espace vectoriel Vect (a) est stable par f ,
× l’endomorphisme f est auto-adjoint.

On en déduit que
(
Vect (a)

)⊥
est stable par f .

On peut ainsi définir f̃ l’endomorphisme induit par f sur
(
Vect (a)

)⊥
.

• L’endomorphisme f̃ est auto-adjoint pour le produit scalaire induit sur(
Vect (a)

)⊥
, donc par hypothèse de récurrence, il existe une base or-

thonormale (e1, . . . , en) de
(
Vect (a)

)⊥
constituée de vecteurs propres

de f̃ .
• La famille (e1, . . . , en,

a
∥a∥) est alors une base orthonormale de E, et est

constituée de vecteurs propres de f .
D’où P(n+ 1).

Ainsi, par principe de récurrence : ∀n ∈ N∗, P(n).

Exercice
Soit

(
E, ⟨·, ·⟩

)
un espace euclidien.

On note n = dim(E) et on suppose n ∈ N∗.
Soit f ∈ S (E). On note λ1 ⩽ . . . ⩽ λn les valeurs propres de f , présentes
avec leur multiplicité.

Démontrer : ∀x ∈ E, λ1 ∥x∥2 ⩽ ⟨u(x), x⟩ ⩽ λn ∥x∥2.

I.6. Endomorphisme auto-adjoint positif et défini positif

I.6.a) Définition

Définition
A) Cas des endomorphismes

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit f ∈ S (E).

• On dit que f est :

× positif si : ∀x ∈ E, ⟨x, f(x)⟩ ⩾ 0

× défini positif si :

{
∀x ∈ E, ⟨x, f(x)⟩ ⩾ 0

∀x ∈ E, ⟨x, f(x)⟩ = 0 ⇒ x = 0E

• On note S +(E) l’ensemble des endomorphismes auto-adjoints positifs.
• On note S ++(E) l’ensemble des endomorphismes auto-adjoints définis

positifs.
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B) Cas des matrices carrées

Soit A ∈ Sn(R).

• On dit que A est :

× positive si : ∀X ∈ Mn,1(R), XT AX ⩾ 0

× définie positive si :

{
∀X ∈ Mn,1(R), XT AX ⩾ 0

∀X ∈ Mn,1(R), XT AX = 0 ⇒ X = 0Mn,1(R)

• On note S +
n (R) l’ensemble des matrices symétriques positives.

• On note S ++
n (R) l’ensemble des matrices symétriques définies posi-

tives.

C) Lien entre les deux

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit B une base orthonormée de E.

Soit f ∈ S (E).

f auto-adjoint positif ⇔ MatB(f) est une matrice
symétrique positive

f auto-adjoint défini positif ⇔ MatB(f) est une matrice
symétrique définie-positive

I.6.b) Caractérisation du caractère (défini) positif par signe des
valeurs propres

Théorème 7.

A) Cas des endomorphismes

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit f ∈ S (E).

1. L’endomorphisme f est positif ⇔ Sp(f) ⊂ R+

Autrement dit, l’endomorphisme f auto-adjoint est positif si et seule-
ment si toutes ses valeurs propres sont positives.

2. L’endomorphisme f est défini positif ⇔ Sp(f) ⊂ R∗
+

Autrement dit, l’endomorphisme f auto-adjoint est défini-positif si et
seulement si toutes ses valeurs propres sont strictement positives.

B) Cas des matrices carrées

Soit A ∈ Sn(R).

1. La matrice A est positive ⇔ Sp(A) ⊂ R+

Autrement dit, la matrice A est positive si et seulement si toutes ses
valeurs propres sont positives.

2. La matrice A est définie positive ⇔ Sp(A) ⊂ R∗
+

Autrement dit, la matrice A est positive si et seulement si toutes ses
valeurs propres sont strictement positives.
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Démonstration.

1. On procède par double implication.

(⇒) Supposons que l’endomorphisme auto-adjoint f est positif.
Soit λ ∈ Sp(f). Soit x un vecteur propre de f associé à la valeur
propre λ.

• Comme f est auto-adjoint positif : ⟨x, f(x)⟩ ⩾ 0.

• De plus : ⟨x, f(x)⟩ = ⟨x, λ x⟩ = λ ⟨x, x⟩ = λ ∥x∥2.
On en déduit : λ ∥x∥2 ⩾ 0. Or, comme x ̸= 0E (c’est un vecteur
propre de f), alors : ∥x∥ ≠ 0.
Finalement :

λ ∥x∥2 ⩾ 0 et ∥x∥2 > 0 donc λ ⩾ 0

(⇐) Supposons : Sp(f) ⊂ R+.

• Notons λ1, . . ., λn les valeurs propres (pas forcément distinctes) de
l’endomorphisme f .
Comme Sp(f) ⊂ R+, alors : ∀i ∈ J1, nK, λi ⩾ 0.

• Comme l’endomorphisme f est auto-adjoint, alors, par théorème
spectral, il existe une base orthonormée B = (e1, . . . , en) constituée
de vecteurs propres de f . Plus précisément, pour tout i ∈ J1, nK, le
vecteur ei est un vecteur propre associé à la valeur propre λi.

• Soit x ∈ E. Alors il existe (x1, . . . , xn) ∈ Kn tel que : x =
n∑

i=1
xi ·ei.

Par linéarité de f :

f(x) = f

(
n∑

i=1
xi · ei

)
=

n∑
i=1

xi · f(ei) =
n∑

i=1
λi xi · ei

On en déduit :〈
x, f(x)

〉
=

〈 n∑
i=1

xi · ei,
n∑

j=1
λj xj · ej

〉
=

n∑
i=1

xi

〈
ei,

n∑
j=1

λj xj · ej
〉 (par linéarité à

gauche de ⟨·, ·⟩)

=
n∑

i=1
xi

(
n∑

j=1
λj xj

〈
ei, ej

〉) (par linéarité à
droite de ⟨·, ·⟩)

=
n∑

i=1
xi

(
n∑

j=1
λj xj δi,j

)

=
n∑

i=1
xi ( λi xi )

=
n∑

i=1
λi (xi )

2 ⩾ 0

Donc l’endomorphisme auto-adjoint f est positif.
2. On procède par double implication.

(⇒) Supposons que l’endomorphisme auto-adjoint f est défini positif.
Soit λ ∈ Sp(f). Soit x un vecteur propre de f associé à la valeur
propre λ.
• En particulier, l’endomorphisme auto-adjoint f est positif. Comme

vu dans le point 1. :

⟨x, f(x)⟩ = ⟨x, λ x⟩ = λ ⟨x, x⟩ = λ ∥x∥2 ⩾ 0 et ∥x∥2 > 0 et λ ⩾ 0

• Ici, on suppose que l’endomorphisme auto-adjoint f est défini po-
sitif. Ainsi :

⟨x, f(x)⟩ > 0 (puisque x ̸= 0E)

Finalement :
λ ∥x∥2 > 0 et ∥x∥2 > 0

On en conclut : λ > 0.
Ainsi : Sp(f) ⊂ R∗

+.
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(⇐) Supposons : Sp(f) ⊂ R∗
+.

On reprend les notations du point 1 :

× λ1, . . ., λn les valeurs propres (pas forcément distinctes) de f ,

× B = (e1, . . . , en) base orthonormée constituée de vecteurs propres
de f et telle que pour tout i ∈ J1, nK, ei est un vecteur propre
associé à la valeur propre λi.

• Comme : Sp(f) ⊂ R∗
+ ⊂ R+ alors d’après 1., on sait déjà que

l’endomorphisme auto-adjoint f est positif.

• Démontrons qu’il est défini-positif. Soit x ∈ E.
Supposons : ⟨x, f(x)⟩ = 0. Démontrons : x = 0E .

× Comme x ∈ E, alors il existe (x1, . . . , xn) ∈ Kn tel que : x =
n∑

i=1
xi · ei.

Alors, comme en 1. : ⟨x, f(x)⟩ =
n∑

i=1
λi

(
xi
)2.

× Or, par hypothèse : ⟨x, f(x)⟩ = 0. Donc :
n∑

i=1
λi

(
xi
)2

= 0.

Comme, pour tout i ∈ J1, nK, λi

(
xi
)2

⩾ 0, on en déduit :

∀i ∈ J1, nK, λi

(
xi
)2

= 0

donc ∀i ∈ J1, nK,
(
xi
)2

= 0
(car ∀i ∈ J1, nK, λi > 0
puisque Sp(f) ⊂ R∗

+)

donc ∀i ∈ J1, nK, xi = 0

Finalement : x =
n∑

i=1
xi · ei =

n∑
i=1

0 · ei = 0E .

L’endomorphisme auto-adjoint f est donc défini positif.

Exemple

• Soit A ∈ Mn(R), alors AT A et AAT sont symétriques positives.

• Soit A ∈ GLn(R), alors AT A et AAT sont symétriques définies positives.

À RETENIR (aspect théorique)

• Cet exercice est une excellente illustration de beaucoup d’exercices sur les
endomorphismes auto-adjoints. Plus précisément :

× pour le sens direct, on doit démontrer une propriété sur le spectre de
f c’est-à-dire sur chacune des valeurs propres λ de f . Pour ce faire, on
introduit x un vecteur propre associé à la valeur propre λ et on travaille
sur ce vecteur propre.

× pour le sens réciproque, on doit démontrer une propriété vérifiée pour
tout x ∈ E. Pour ce faire, comme f est auto-adjoint, on se sert du fait
que f est ortho-diagonalisable afin de pouvoir travailler dans une base
orthonormée B de E constituée de vecteurs propres de f .
On rédigera ce point comme suit :

• Notons λ1, . . ., λn les valeurs propres (pas forcément distinctes)
de l’endomorphisme f .

• Comme l’endomorphisme f est auto-adjoint, alors, par théo-
rème spectral, il existe une base orthonormée B = (e1, . . . , en)
constituée de vecteurs propres de f .
Plus précisément, pour tout i ∈ J1, nK, le vecteur ei est un
vecteur propre associé à la valeur propre λi.

Il faut retenir ces deux idées fondamentales dans les exercices sur les en-
domorphismes auto-adjoints.
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À RETENIR (aspect calculatoire)

Soit E un espace vectoriel de dimension finie n ∈ N∗.
Soit f un endomorphisme auto-adjoint de E.
On introduit les notations λ1, . . ., λn (valeurs propres pas forcément dis-
tinctes de f) et B = (e1, . . . , en) base orthonormée constituée de vecteurs
propres de f .

• Dans les exercices, il est classique d’avoir à calculer la quantité ⟨x, f(x)⟩
(où x ∈ E). Avec les notations précédentes et en notant (x1, . . . , xn) ∈ Rn

les coordonnées de x dans B :〈
x, f(x)

〉
=

〈 n∑
i=1

xi · ei,
n∑

j=1
λj xj · ej

〉
=

n∑
i=1

xi

〈
ei,

n∑
j=1

λj xj · ej
〉 (par linéarité à

gauche de ⟨·, ·⟩)

=
n∑

i=1
xi

(
n∑

j=1
λj xj

〈
ei, ej

〉) (par linéarité à
droite de ⟨·, ·⟩)

=
n∑

i=1
xi

(
n∑

j=1
λj xj δi,j

)

=
n∑

i=1
xi ( λi xi )

=
n∑

i=1
λi (xi )

2 ⩾ 0

On retiendra cette expression : ∀x ∈ E, ⟨x, f(x)⟩ =
n∑

i=1
λi

(
xi
)2

• On peut aussi effectuer ce calcul comme suit :

⟨x, f(x)⟩ = ⟨x, f(x)⟩B (car B est une BON)

= (MatB(x))T ×MatB
(
f(x)

)
= (MatB(x))T ×MatB(f)×MatB

(
x
)

=
(
x1 . . . xn

)λ1

. . .
λn


x1

...
xn

 (par définition de B,
base de diagonalisation
de l’endomorphisme f)

=
n∑

i=1
λi

(
xi
)2

• Ce dernier calcul met en avant un calcul souvent réalisé lorsque l’exercice
demande l’étude d’une matrice symétrique réelle S (plutôt qu’un endomor-
phisme auto-adjoint).
Lorsque c’est le cas, il est classique d’effectuer le calcul XT S X (pour
X ∈ Mn,1(R)).

Comme S est une matrice symétrique réelle, S est ortho-diagonalisable.
Autrement dit, il existe :
× P ∈ On(R),

× D =

λ1

. . .
λn

 ∈ Mn(R),

telles que S = PDP T . Alors :

XT S X = XT

(
PDP T

)
X

=
(
P TX

)T

D P TX

=
(
Y
)T

D Y
(en notant Y le vecteur
tel que X = PY )

=
n∑

i=1
λi

(
yi
)2 (en notant (y1, . . . , yn) les

coefficients de Y )
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