Orthogonal - Norme - Distance

Exercices classiques, méthodes usuelles

I. Espaces vectoriels normés

I.1. Notion de limites, continuité

Exercice 1 (Oraux CCINP)

Soit A une partie non vide d'un \mathbb{R} -espace vectoriel normé E.

- 1. Rappeler la définition d'un point adhérent à A, en termes de voisinages ou de boules.
- **2.** Démontrer : $x \in \overline{A} \iff \exists (x_n)_{n \in \mathbb{N}}$ telle que, $\forall n \in \mathbb{N}, x_n \in A$ et $\lim_{n \to +\infty} x_n = x$.
- 3. Démontrer que, si A est un sous-espace vectoriel de E, alors \overline{A} est un sous-espace vectoriel de E.
- 4. Démontrer que si A est convexe, alors \overline{A} est convexe.

Exercice 2 (Oraux CCINP)

E et F désignent deux espaces vectoriels normés.

On note $\|\cdot\|_E$ (respectivement $\|\cdot\|_F$) la norme sur E (respectivement sur F).

- 1. Soient f une application de E dans F et a un point de E. On considère les propositions suivantes :
- **P1** f est continue en a.
- **P2** Pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E telle que $\lim_{n\to+\infty} x_n = a$, alors $\lim_{n\to+\infty} f(x_n) = f(a)$. Prouver que les propositions **P1** et **P2** sont équivalentes.
- 2. Soit A une partie dense dans E, et soient f et g deux applications continues de E dans F. Démontrer que si, pour tout $x \in A$, f(x) = g(x), alors f = g.

Exercice 3 (Oraux CCINP)

Soient E et F deux espaces vectoriels normés sur \mathbb{R} .

On note $\|\cdot\|_E$ (respectivement $\|\cdot\|_F$) la norme sur E (respectivement sur F).

- 1. Démontrer que si f est une application linéaire de E dans F, alors les propriétés suivantes sont deux à deux équivalentes :
- **P1** f est continue sur E.
- **P2** f est continue en 0_E .
- **P3** $\exists k > 0 \text{ tel que} : \forall x \in E, ||f(x)||_F \le k ||x||_E.$
- 2. Soit E l'espace vectoriel des applications continues de [0,1] dans \mathbb{R} muni de la norme définie par : $\|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|$. On considère l'application φ de E dans \mathbb{R} , définie par : $\varphi(f) = \int_0^1 f(t) \ dt$. Démontrer que φ est linéaire et continue.

Exercice 4 (Oraux CCINP)

Soit E un espace vectoriel normé. Soient A et B deux parties non vides de E.

- 1. a) Rappeler la caractérisation de l'adhérence d'un ensemble à l'aide des suites.
 - **b)** Montrer que : $A \subset B \Rightarrow \overline{A} \subset \overline{B}$.
- 2. Montrer que : $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Remarque : une réponse sans utiliser les suites est aussi acceptée.

- 3. a) Montrer que : $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
 - b) Montrer, à l'aide d'un exemple que l'autre inclusion n'est pas forcément vérifiée (on pourra prendre $E = \mathbb{R}$).

Exercice 5 (Oraux CCINP)

Les questions 1. et 2. sont indépendantes.

Soit E un \mathbb{R} -espace vectoriel normé. Soit A une partie non vide de E.

On note A l'adhérence de A.

- 1. a) Donner la caractérisation séquentielle de \overline{A} .
 - b) Prouver que, si A est convexe, alors \overline{A} est convexe.
- 2. On pose : $\forall x \in E, d_A(x) = \inf_{a \in A} ||x a||.$
 - a) Soit $x \in E$. Prouver : $d_A(x) = 0 \implies x \in \overline{A}$.
 - b) On suppose que A est fermée et : $\forall (x,y) \in E^2, \forall t \in [0,1], d_A(tx+(1-t)y) \leq td_A(x)+(1-t)d_A(y)$. Prouver que A est convexe.

I.2. Normes

Exercice 6 (Oraux CCINP)

On note E l'espace vectoriel des applications continues de [0,1] dans \mathbb{R} .

On pose:
$$\forall f \in E, N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)| \text{ et } N_1(f) = \int_0^1 |f(t)| dt.$$

- 1. a) Démontrer que N_{∞} et N_1 sont deux normes sur E.
 - b) Démontrer qu'il existe k > 0 tel que, pour tout f de $E: N_1(f) \leq k N_{\infty}(f)$.
 - c) Démontrer que tout ouvert pour la norme N_1 est un ouvert pour la norme N_{∞} .
- 2. Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes.

II. Produit scalaire

II.1. Définition

Exercice 7 (Oraux CCINP)

Soit a et b deux réels tels que a < b.

1. Soit h une fonction continue et positive de [a, b] dans \mathbb{R} .

Démontrer :
$$\int_a^b h(x) dx = 0 \implies h = 0.$$

2. Soit E le \mathbb{R} -espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} .

On pose :
$$\forall (f,g) \in E^2$$
, $\langle f \, | \, g \rangle = \int_a^b f(x) \, g(x) \, dx$. Démontrer que l'on définit ainsi un produit scalaire sur E .

3. Majorer $\int_{-\pi}^{\pi} \sqrt{x} e^{-x} dx$ en utilisant l'inégalité de Cauchy-Schwarz.

II.2. Orthogonal

Exercice 8 (Oraux CCINP)

On note l^2 l'ensemble des suites $x=(x_n)_{n\in\mathbb{N}}$ de nombres réels telles que la série $\sum x_n^2$ converge.

- 1. a) Démontrer que, pour $x=(x_n)_{n\in\mathbb{N}}\in l^2$ et $y=(y_n)_{n\in\mathbb{N}}\in l^2$, la série $\sum x_n\,y_n$ converge. On pose alors $\langle x\,|\,y\rangle=\sum_{n=0}^{+\infty}x_n\,y_n$.
 - b) Démontrer que l^2 est un sous-espace vectoriel de l'espace vectoriel des suites de nombres réels. Dans la suite de l'exercice, on admet que $\langle \cdot | \cdot \rangle$ est un produit scalaire dans l^2 . On suppose que l^2 est muni de ce produit scalaire et de la norme euclidienne associée, notée $\| \cdot \|$.
- 2. Soit $p \in \mathbb{N}$. Pour tout $x = (x_n) \in l^2$, on pose : $\varphi(x) = x_p$. Démontrer que φ est une application linéaire et continue de l^2 dans \mathbb{R} .
- 3. On considère l'ensemble F des suites réelles presque nulles c'est-à-dire l'ensemble des suites réelles dont tous les termes sont nuls sauf peut-être un nombre fini de termes. Déterminer F^{\perp} (au sens de $\langle\cdot\,|\,\cdot\rangle$). Comparer F et $(F^{\perp})^{\perp}$.

Exercice 9 (Oraux CCINP)

Soit E un espace euclidien.

- 1. Soit A un sous-espace vectoriel de E. Démontrer : $(A^{\perp})^{\perp} = A$.
- 2. Soient F et G deux sous-espaces vectoriels de E.
 - a) Démontrer : $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
 - **b)** Démontrer : $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

II.3. Projeté orthogonal et distance

Exercice 10 (Oraux CCINP)

Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté $\langle \cdot | \cdot \rangle$. On pose : $\forall x \in E, ||x|| = \sqrt{\langle \cdot | \cdot \rangle}$.

- 1. a) Énoncer et démontrer l'inégalité de Cauchy-Schwarz.
 - $\boldsymbol{b})$ Dans quel cas a-t-on égalité? Le démontrer.
- 2. Soit $E = \{ f \in \mathcal{C}([a,b], \mathbb{R}) \mid \forall x \in [a,b], f(x) > 0 \}$. Prouver que l'ensemble $\left\{ \int_a^b f(t) \ dt \times \int_a^b \frac{1}{f(t)} \ dt \mid f \in E \right\}$ admet une borne inférieure m et déterminer la valeur de m.

3

Exercice 11 (Oraux CCINP)

Soit E l'espace vectoriel des applications continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} .

- 1. Démontrer que $\langle f | g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) g(t) dt$ définit un produit scalaire sur E.
- 2. Soit F le sous-espace vectoriel engendré par $f: x \mapsto \cos x$ et $g: x \mapsto \cos(2x)$. Déterminer le projeté orthogonal sur F de la fonction $u: x \mapsto \sin^2(x)$.

Exercice 12 (Oraux CCINP)

On définit dans $\mathscr{M}_2(\mathbb{R}) \times \mathscr{M}_2(\mathbb{R})$ l'application φ par : $\varphi(A, A') = \operatorname{tr}(A^T A')$, où $\operatorname{tr}(A^T A')$ désigne la trace du produit de la matrice A^T par la matrice A'.

On admet que φ est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.

On note
$$\mathcal{F} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid (a, b) \in \mathbb{R}^2 \right\}.$$

- 1. Démontrer que \mathcal{F} est un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$.
- 2. Déterminer une base de \mathcal{F}^{\perp} .
- 3. Déterminer la projeté orthogonal de $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur \mathcal{F}^{\perp} .
- 4. Calculer la distance de J à \mathcal{F} .

Exercice 13 (Oraux CCINP)

Soit E un espace préhilbertien et F un sous-espace vectoriel de E de dimension finie n > 0.

On admet que, pour tout $x \in E$, il existe un élément unique y_0 de F tel que $x - y_0$ soit orthogonal à F et que la distance de x à F soit égale à $||x - y_0||$.

$$F$$
 et que la distance de x à F soit égale à $||x - y_0||$.
Pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, on pose : $\langle A | A' \rangle = aa' + bb' + cc' + dd'$.

- 1. Démontrer que $\langle \cdot | \cdot \rangle$ est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.
- 2. Calculer la distance de la matrice $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ au sous-espace vectoriel F des matrices triangulaires supérieures.

II.4. Isométries

Exercice 14 (Oraux CCINP)

Soit E un espace euclidien de dimension n et u un endomorphisme de E.

On note $\langle x | y \rangle$ le produit scalaire de x et de y et $\| \cdot \|$ la norme euclidienne associée.

- 1. Soit u un endomorphisme de E tel que : $\forall x \in E, ||u(x)|| = ||x||$.
 - a) Démontrer: $\forall (x,y) \in E^2$, $\langle u(x) | u(y) \rangle = \langle x | y \rangle$.
 - b) Démontrer que u est bijectif.
- 2. Démontrer que l'ensemble O(E) des isométries vectorielles de E, muni de la loi \circ , est un groupe.
- 3. Soit $u \in \mathcal{L}(E)$. Soit $e = (e_1, e_2, \dots, e_n)$ une base orthonormée de E. Prouver : $u \in O(E) \Leftrightarrow (u(e_1), u(e_2), \dots, u(e_n))$ est une base orthonormée de E.

III. Matrices

Exercice 15 (Oraux CCINP)

On note $\mathcal{M}_n(\mathbb{C})$ l'espace vectoriel des matrices carées d'ordre n à coefficients complexes.

Pour
$$A = (a_{i,j})_{(i,j) \in [\![1,n]\!]^2} \in \mathscr{M}_n(\mathbb{C})$$
, on pose : $||A|| = \max_{(i,j) \in [\![1,n]\!]^2} |a_{i,j}|$.

- 1. Prouver que $\|\cdot\|$ est une norme sur $\mathcal{M}_n(\mathbb{C})$.
- 2. Démontrer : $\forall (A,B) \in (\mathcal{M}_n(\mathbb{C}))^2$, $||AB|| \leq n ||A|| ||B||$. Puis démontrer, pour tout entier $p \geq 1$: $||A^p|| \leq n^{p-1} ||A||^p$.

Exercice 16 (Oraux CCINP)

1. Soit $A \in S_n(\mathbb{R})$.

Prouver : $A \in S_n^+(\mathbb{R}) \iff \operatorname{Sp}(A) \subset [0, +\infty[$.

- 2. Prouver: $\forall A \in S_n(\mathbb{R}), A^2 \in S_n^+(\mathbb{R}).$
- 3. Prouver: $\forall A \in S_n(\mathbb{R}), \forall B \in S_n^+(\mathbb{R}), AB = BA \Rightarrow A^2B \in S_n^+(\mathbb{R}).$
- 4. Soit $A \in S_n^+(\mathbb{R})$.

Prouver qu'il existe $B \in S_n^+(\mathbb{R})$ telle que : $A = B^2$.

Exercice 17 (Oraux CCINP)

Soit $n \in \mathbb{N}^*$. On considère $E = \mathscr{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n.

On pose : $\forall (A, B) \in E^2$, $\langle A, B \rangle = \operatorname{tr}(A^T B)$ où tr désigne la trace et A^T désigne la transposée de la matrice A.

- 1. Prouver que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
- 2. On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de E.

Une matrice A de E est dite antisymétrique lors que $A^T = -A$.

On note $A_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de E.

On admet que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont des sous-espaces vectoriels de E.

- a) Prouver : $E = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$.
- **b)** Prouver : $A_n(\mathbb{R})^{\perp} = S_n(\mathbb{R})$.
- 3. Soit F l'ensemble des matrices diagonales de E. Déterminer F^{\perp} .