PSI 2024-2025

Feuille d'exercices n°3 : Intégration

Techniques de calcul d'intégrales

Exercice 1

Calculer les intégrales suivantes :

a)
$$\int_{0}^{2} t e^{2t} dt$$

b) $\int_{1}^{e} \ln(x) dx$
c) $\int_{2}^{4} \frac{1}{1-x^{2}} dx$
d) $\int_{1}^{4} \sqrt{x} \ln(x) dx$
e) $\int_{0}^{1} \frac{t}{2t+1} dt$
f) $\int_{0}^{1} x \sqrt{3x+1} dx$
g) $\int_{0}^{1} \frac{x^{2}}{x^{6}+1} dx$
h) $\int_{0}^{1} \frac{x}{\sqrt{1-x^{4}}} dx$

Exercice 2

Soit g la fonction définie sur \mathbb{R}_+^* par $g(x) = \ln\left(\frac{x}{x+1}\right) - \frac{\ln(1+x)}{x}$.

A l'aide d'un changement de variables, montrer que, pour tout $x \in \mathbb{R}^+$:

$$\int_0^x e^{-t} \ln(1 + e^t) dt = g(e^x) + 2\ln(2)$$

Exercice 3

Déterminer la nature des intégrales suivantes, et donner leur valeur en cas de convergence.

1.
$$\int_0^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt$$
 2. $\int_1^2 \frac{x}{(x-1)^{\frac{1}{3}}} dx$ 3. $\int_1^{+\infty} \frac{\ln(x)}{x^2} dx$
4. $I = \int_0^{+\infty} \frac{1}{(1+x)^2} dx$ puis $J = \int_{-\infty}^{+\infty} \frac{1}{2(1+|x|)^2} dx$.

Exercice 4

Soit x un réel strictement positif et n un entier naturel non nul.

- 1. Étudier la convergence de l'intégrale $I_n(x) = \int_{-\ln(x)}^{+\infty} e^{-nt} dt$.
- 2. Étudier suivant les valeurs de x, la convergence de la série de terme général $I_n(x)$.
- 3. On pose $J_n(x) = \int_{-\ln(x)}^{+\infty} e^{-t} \frac{1 e^{-nt}}{1 e^{-t}} dt$.
 - a) Justifier la convergence de l'intégrale $J_n(x)$. On distinguera les cas 0 < x < 1 et x > 1.
 - b) Montrer que $\sum_{k=1}^{n} \frac{x^k}{k} = J_n(x)$.
- 4. On suppose ici que 0 < x < 1.
 - a) Étudier la fonction g définie sur $[-\ln(x), +\infty[$ par $g(t) = \frac{e^{-t}}{1 e^{-t}}$.
 - **b)** Calculer $\int_{-\ln(x)}^{+\infty} \frac{e^{-t}}{1 e^{-t}} dt$ et en déduire la valeur de $\sum_{k=1}^{+\infty} \frac{x^k}{k}$.

Changement de variable affine

Exercice 5

Pour tout couple d'entiers naturels (p,q), on pose $B(p,q) = \int_0^1 t^p (1-t)^q dt$.

- 1. Soit $(p,q) \in \mathbb{N}^2$. Montrer que : B(p,q) = B(q,p).
- 2. Soit $(p,q) \in \mathbb{N}^* \times \mathbb{N}$. Établir la relation : $B(p,q) = \frac{p}{q+1} \ B(p-1,q+1)$.
- 3. Calculer, pour tout entier naturel n, B(0, n).
- 4. En déduire la valeur de B(p,q), pour tout couple d'entiers naturels (p,q).
- 5. En déduire une expression simple de $\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{p+k+1}$, pour tout $(n,p) \in \mathbb{N}^2$.

Exercice 6

Soient a et b deux réels strictement positifs et $f \in \mathcal{C}^1(\mathbb{R}_+)$ telle que l'intégrale $\int_{1}^{+\infty} \frac{f(t)}{t} dt$ converge.

- 1. Montrer que, pour $\alpha > 0$, on a : $\int_{\alpha}^{+\infty} \frac{f(bx) f(ax)}{x} dx = \int_{t}^{a\alpha} \frac{f(t)}{t} dt.$
- 2. En déduire que l'intégrale $\int_0^{+\infty} \frac{f(bx) f(ax)}{x} dx$ existe et vaut $f(0) \ln \left(\frac{a}{h}\right)^2$.
- 3. Montrer l'existence $\int_0^{+\infty} \frac{e^{-bx} e^{-ax}}{x} dx$ et donner sa valeur.
- 4. Déduire de la question précédente la convergence et la valeur de $\int_0^1 \frac{t-1}{\ln(t)} dt$. On considère la fonction : $F: [-2\pi, 2\pi] \setminus \{0\} \to \mathbb{R}$

Intégrale fonction de ses bornes

Exercice 7

On considère la fonction f définie par $f: x \mapsto \int_{\frac{1}{2}}^{x} \frac{\ln(t)}{1+t^2} dt$.

- 1. a) Démontrer que f est définie sur $]0, +\infty[$ Montrer que f est dérivable sur $]0, +\infty[$, et calculer f'.
 - b) En déduire f(x) pour tout $x \in [0, +\infty[$.
- 2. Retrouver ce résultat en posant le changement de variable $u=\frac{1}{t}$.

Exercice 8

On considère la fonction H définie sur \mathbb{R}_+ par $H(x) = \int_{-\infty}^{+\infty} \frac{e^{-t}}{1+t} dt$.

- 1. Montrer que H est bien définie sur \mathbb{R}_+ .
- 2. Montrer que H est de classe \mathscr{C}^1 sur \mathbb{R}_+ , et calculer H'(x), pour tout $x \geqslant 0$.
- 3. Montrer que $\lim_{x \to +\infty} xH(x) = 0$.
- 4. Montrer que l'intégrale $I = \int_0^{+\infty} H(t) dt$ est convergente et calculer sa valeur en fonction de H(0).

Exercice 9

 $F : \mathbb{R} \to \mathbb{R}$

On considère la fonction :

$$x \mapsto \int_{\cos(x)}^{\sin(x)} \sqrt{1-t^2} dt$$

- 1. Déterminer le domaine de définition de F et préciser son domaine d'étude. 2. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} . Préciser la dérivée de F et étudier ses variations.
- 3. Donner l'allure du graphe de F.

 $x \qquad \qquad \mapsto \quad \int^{2x} \frac{\sin(t)}{t^2} \ dt$

- 1. Montrer que F est paire.
- **2.** a) Démontrer : $F(\pi) = \int_0^{\pi} \left(\frac{1}{(u+2\pi)^2} \frac{1}{(u+\pi)^2} \right) \sin(u) \ du$.
 - b) En déduire le signe de $F(\pi)$.
- 3. En s'inspirant de la question précédente, déterminer le signe de $F(2\pi)$.
- 4. a) Montrer que F est indéfiniment dérivable sur son ensemble de définition. Préciser la dérivée de F et étudier ses variations.
 - b) Montrer alors que F s'annule exactement quatre fois et isoler chacun de ses points d'annulation.
- 5. a) Vérifier: $\forall t \in \mathbb{R}_+^*, |\sin(t) t| \leqslant \frac{t^3}{6}$.
 - b) En déduire que F se prolonge par continuité en 0 en une fonction G.
 - c) Préciser la valeur prise par la fonction G en 0, puis montrer que G est de classe \mathscr{C}^1 sur $[-2\pi, 2\pi]$.

Sommes de Riemann

Exercice 11

Calculer les limites des suites dont on donne le terme général ci-dessous.

1.
$$u_n = \sum_{k=0}^{n-1} \frac{k^3}{n^4}$$

1.
$$u_n = \sum_{k=0}^{n-1} \frac{k^3}{n^4}$$
 4. $z_n = \sum_{k=1}^n \frac{1}{(2n+k)(\ln(2n+k) - \ln(n))}$

2.
$$v_n = \sum_{k=0}^{n-1} \frac{k^2}{n^3 + k^3}$$

2.
$$v_n = \sum_{k=0}^{n-1} \frac{k^2}{n^3 + k^3}$$
 5. $s_n = \sum_{k=1}^n \frac{1}{\sqrt{n(n+k)}}$

3.
$$w_n = \sum_{k=1}^n \frac{k}{n^2 + k^2}$$
 6. $t_n = \left(\frac{(2n)!}{n^n \ n!}\right)^{\frac{1}{n}}$

6.
$$t_n = \left(\frac{(2n)!}{n^n \ n!}\right)^{\frac{1}{n}}$$

Exercice 12

Étudions l'erreur commise lorsque l'on approche une intégrale par une somme

On considère la fonction f définie sur [0,1] par $f: x \mapsto \frac{1}{1+x^2}$.

- 1. Justifier l'existence d'un réel M tel que $\forall x \in [0,1], |f'(x)| \leq M$. Déterminer un tel réel M.
- 2. Montrer que pour tout entier naturel n non nul :

$$\left|\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right) - \int_0^1 f(t) \ dt\right| \ \leqslant \ \sum_{k=1}^n \left|\int_{\frac{k-1}{n}}^{\frac{k}{n}} \ \left|f\left(\frac{k}{n}\right) - f(t)\right| \ dt$$

3. En déduire que pour tout entier naturel n non nul :

$$\left| \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - \int_{0}^{1} f(t) dt \right| \leq \frac{1}{n}$$

Exercice 13

Pour tout $n \in \mathbb{N}^*$, on pose : $u_n = \sum_{k=1}^n \sin\left(\frac{k}{n}\right) \sin\left(\frac{k}{n^2}\right)$

- 1. Vérifier, pour tout $x \in \mathbb{R}_+ : \left| \sin(x) x \right| \leqslant \frac{x^3}{6}$.
- 2. Démontrer, pour tout $n \in \mathbb{N}^*$: $\left| u_n \sum_{k=1}^n \frac{k}{n^2} \sin\left(\frac{k}{n}\right) \right| \leqslant \frac{1}{6n^2}$.
- 3. Démontrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.

Inégalité de Cauchy-Schwarz et inégalité de Minkowski

Exercice 14

Soit $(a,b) \in \mathbb{R}^2$ vérifiant : a < b. Soient f et g deux fonctions réelles définies et continues sur [a, b].

1. On considère la fonction :

$$\varphi : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \int_a^b (f(t) + x g(t))^2 dt$$

Montrer que φ est une fonction polynomiale positive et que, sauf dans un cas particulier que l'on identifiera, son degré est 2.

2. Établir, dans tous les cas, la formule :

$$\left| \int_a^b f(t) g(t) dt \right| \leqslant \sqrt{\int_a^b (f(t))^2 dt} \int_a^b (g(t))^2 dt$$

3. Démontrer: $\sqrt{\int_a^b (f(t) + g(t))^2 dt} \leqslant \sqrt{\int_a^b (f(t))^2 dt} + \sqrt{\int_a^b (g(t))^2 dt}$.

Intégrales définies par une relation de récurrence

Exercice 15

On pose, pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 \frac{x^n}{\sqrt{1-x}} dx$.

- 1. Montrer que I_n existe, pour tout $n \in \mathbb{N}$.
- 2. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente.
- 3. a) Montrer que, pour tout $n \in \mathbb{N}^*$, $I_n = \frac{2n}{2n+1}I_{n-1}$.
 - b) En déduire l'existence et la nature de la série de terme général $v_n = \ln(I_n) \ln(I_{n-1})$, puis la limite de $(I_n)_{n \in \mathbb{N}}$.
- 4. Pour tout $n \in \mathbb{N}$, on pose $J_n = \sqrt{n} I_n$ et $K_n = \sqrt{n+1} I_n$.
 - a) Montrer que les suites $(J_n)_{n\in\mathbb{N}}$ et $(K_n)_{n\in\mathbb{N}}$ sont adjacentes.
 - b) En déduire qu'il existe un réel $\alpha > 0$ tel que $I_n \sim \frac{\alpha}{\sqrt{n}}$.
- 5. a) Calculer I_n en fonction de n.
 - **b)** On admet la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$.

Montrer que : $I_n \underset{n \to +\infty}{\sim} e \left(\frac{2n}{2n+1}\right)^{2n+1} \frac{\sqrt{\pi}}{\sqrt{n}}$.

c) Déterminer la valeur de α .

Exercice 16

Pour $n \in \mathbb{N}$, on pose : $J_n = \int_0^{+\infty} e^{-u} u^n du$ et $I_n = \int_0^1 (t \ln(t))^n dt$.

- 1. Montrer que J_0 est convergente, et calculer sa valeur.
- 2. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, l'intégrale J_n existe. À l'aide d'une relation de récurrence entre J_n et J_{n+1} , déterminer la valeur de J_n pour tout $n \in \mathbb{N}$.
- 3. Montrer que, pour tout $n \in \mathbb{N}$, l'intégrale I_n est convergente.
- 4. Soit $x \in]0,1[$. En posant $u=-(n+1)\ln(t)$, calculer $\int_{x}^{1} (t\ln(t))^{n} dt$.
- **5.** En déduire la valeur de $I_n = \int_0^1 (t \ln(t))^n dt$, pour tout $n \in \mathbb{N}$.

Exercice 17

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_{-\infty}^{+\infty} \frac{dx}{(1+x^2)^n}$ et $u_n = \sqrt{n} I_n$. On admet que $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$.

- 1. Pour tout $n \in \mathbb{N}^*$, montrer que I_n est convergente. Établir une relation de récurrence entre I_n et I_{n+1} .
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est monotone et étudier sa convergence.
- 3. Calculer I_n , pour tout $n \ge 1$.
- 4. a) Montrer que, pour tout réel x: $\ln(1+x^2) \leqslant x^2$. En déduire que pour tout $n \geqslant 1$: $I_n \geqslant \int_{-\infty}^{+\infty} e^{-nx^2} dx$.
 - **b)** Montrer que, pour tout $n \in \mathbb{N}^*$: $\int_{-\infty}^{+\infty} e^{-nx^2} dx = \frac{\sqrt{\pi}}{\sqrt{n}}$.
 - c) En déduire une minoration de la suite $(u_n)_{n\in\mathbb{N}^*}$ et conclure que la suite $(u_n)_{n\in\mathbb{N}^*}$ ne tend pas vers 0 lorsque n tend vers $+\infty$.
- 5. Montrer qu'il existe un réel α tel que $\binom{2n}{n} \underset{n \to +\infty}{\sim} \frac{\alpha \, 4^n}{\sqrt{n}}$.

Lien séries intégrales

Exercice 18

Soit f la fonction définie sur $[2, +\infty[$ par $: f(t) = \frac{1}{t \ln^2(t)}$.

- 1. Quelle est la nature de l'intégrale $\int_{2}^{+\infty} f(t) dt$?
- 2. Déterminer le tableau de variations de f.
- 3. En déduire la nature de la série $\sum \frac{1}{n \ln^2(n)}$.
- 4. Généraliser ce résultat en déterminant la nature de la série $\sum_{n\geqslant 2}\frac{1}{n\ln^{\beta}(n)}$ où $\beta>1$.

PSI 2024-2025

Exercice 19

On note f la fonction définie, pour tout x > 0, par : $f(x) = \frac{e^{\frac{1}{x}}}{x^2}$.

- 1. a) Pour tout $n \ge 1$, on pose $I_n = \int_n^{+\infty} f(x) dx$. Montrer que l'intégrale I_n est convergente et exprimer I_n en fonction de n.
 - b) En déduire que $I_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.
- 2. Montrer que la série de terme général $u_n = f(n)$ est convergente.
- 3. a) Établir que pour tout $k \in \mathbb{N}^*$, $f(k+1) \leqslant \int_{k}^{k+1} f(x) dx \leqslant f(k)$.
 - $\boldsymbol{b})$ En sommant soigneusement cette dernière inégalité, montrer que :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=n+1}^{+\infty} u_k \leqslant I_n \leqslant \sum_{k=n+1}^{+\infty} u_k + \frac{e^{\frac{1}{n}}}{n^2}$$

c) Déduire des questions précédentes un équivalent simple, lorsque n est au voisinage de $+\infty$, de $\sum_{k=n+1}^{+\infty} \frac{e^{\frac{1}{k}}}{k^2}$.

Critères de comparaison (fonctions continues positives)

Exercice 20

On considère, pour $n \in \mathbb{N}$, la fonction f_n définie sur \mathbb{R}_+^* par :

$$\forall x > 0, \ f_n(x) = \frac{n \ln(x)}{n + 1 + nx^2}$$

On définit également sur \mathbb{R}_+^* la fonction h par :

$$\forall x > 0, \ h(x) = \frac{\ln(x)}{1 + x^2}$$

Dans tout l'exercice, n désigne un entier naturel non nul.

1. Montrer que f_n et h sont continues sur \mathbb{R}_+^* et étudier leur signe.

- 2. a) Montrer que l'intégrale impropre $\int_1^{+\infty} \frac{\ln(x)}{x^2} dx$ est convergente et déterminer sa valeur.
 - b) Montrer que l'intégrale impropre $\int_1^{+\infty} h(x) dx$ est convergente.

Dans toute la suite de l'exercice, on note K l'intégrale impropre :

$$K = \int_{1}^{+\infty} h(x) \ dx$$

- 3. a) Montrer que l'intégrale $\int_0^1 h(x) dx$ est convergente.
 - b) En posant $u = \frac{1}{x}$, montrer que : $K = -\int_0^1 h(u) du$.
 - c) En déduire que l'intégrale impropre $\int_0^{+\infty} |h(x)| dx$ converge et est égale à 2K.
 - d) En déduire également que l'intégrale impropre $\int_0^{+\infty} h(x) dx$ converge et vaut 0.
- **4. a)** Montrer que, pour tout réel x strictement positif : $|f_n(x)| \leq |h(x)|$. En déduire la convergence de l'intégrale $\int_0^{+\infty} f_n(x) dx$.
 - **b)** Montrer que, pour tout x > 0: $h(x) f_n(x) = \frac{h(x)}{n+1+nx^2}$.
 - c) En déduire successivement : $0 \leqslant \int_{1}^{+\infty} (h(x) f_n(x)) dx \leqslant \frac{K}{n+1}$, et : $-\frac{K}{n+1} \leqslant \int_{0}^{1} (h(x) f_n(x)) dx \leqslant 0$.
 - d) Montrer que : $\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx = 0.$
- **5.** Calculer, pour tout x > 0, $\lim_{n \to +\infty} f_n(x)$.

A-t-on
$$\lim_{n\to+\infty} \int_0^{+\infty} f_n(x) \ dx = \int_0^{+\infty} \lim_{n\to+\infty} f_n(x) \ dx$$
?

Exercice 21

1. Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}^*, \ f(x) = \frac{x}{e^x - 1}$$
 et $f(0) = 1$.

 \mathcal{C} désigne la courbe représentative de f dans un repère orthogonal.

- a) Montrer que f est continue et dérivable sur \mathbb{R} .
- b) Étudier les variations de f et déterminer ses limites en $+\infty$ et $-\infty$. Tracer la courbe \mathcal{C} .
- c) Montrer que pour tout $x \ge 0$, on a : $0 \le f(x) \le 1$.
- 2. Montrer que l'aire comprise entre la courbe \mathcal{C} et ses asymptotes est finie.
- 3. Pour tout entier naturel n, on pose : $I_n = \int_{1}^{+\infty} f(x)e^{-nx} dx$.
 - a) Montrer que, pour tout $n \in \mathbb{N}$, l'intégrale I_n est convergente.
 - b) Montrer que pour $n \ge 1$, on a : $0 \le I_n \le \frac{1}{n}$. En déduire $\lim_{n \to +\infty} I_n$.
 - c) Montrer que pour $n \ge 1$, on a : $\forall x \ge 0$, $f(x) = f(x)e^{-nx} + \sum_{n=1}^{n} x e^{-kx}$. En déduire que : $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \int_{0}^{+\infty} f(x) \ dx$.
- 4. On pose pour tout u > 0, $J_u = \int_0^{+\infty} \frac{x}{e^{ux} 1} dx$ et $K_u = \int_0^{+\infty} \frac{x}{e^{ux} + 1} dx$. Exercise 23
 Pour x > 0, on pose $f(x) = \int_0^1 \frac{t^x}{1 + t} dt$.
 - a) Montrer que, pour tout u>0, les intégrales J_u et K_u sont convergentes.
 - b) Calculer, pour tout u > 0, J_u et K_u en fonction de J_1 et K_1 .
 - c) Etablir que $J_1 K_1 = 2J_2$.
 - d) Déduire des questions précédentes une relation simple entre J_1 et K_1 , puis entre J_u et K_u .

Exercice 22

1. Déterminer la nature des intégrales généralisées suivantes :

a)
$$\int_0^{+\infty} \frac{1}{1+t} dt$$
 c)
$$\int_0^{+\infty} x^n e^{-x} dx$$
 e)
$$\int_0^{+\infty} \frac{x}{1+e^x} dx$$
 (avec $n \in \mathbb{N}$)

b)
$$\int_{-\infty}^{+\infty} e^{-x^2} dx$$
 d) $\int_{1}^{3} \frac{e^{-x}}{\sqrt{x-1}} dx$ **f)** $\int_{0}^{+\infty} \frac{\ln(x)}{x+e^{-x}} dx$

$$g) \int_{0}^{+\infty} \frac{1}{1+t+t^{n}} dt$$

$$(avec \ n \in \mathbb{N})$$

$$t \mapsto e^{-\alpha t} (1 - e^{-t})^{n} dt$$

$$(avec \ n \in \mathbb{N} \ et \ \alpha > 0)$$

$$t \mapsto \infty \quad e^{-t}$$

h)
$$\int_{0}^{+\infty} \frac{e^{-t}}{1+t^{n}} dt$$
 j)
$$\int_{0}^{+\infty} \frac{t^{k}e^{-xt}}{1+t^{2}} dt$$
 (avec $x \in \mathbb{R}^{*}_{+}$ et $k \in \mathbb{N}$)

2. Déterminer un équivalent de $\frac{x^3 e^x}{(1+e^x)^2}$ lorsque x tend vers $+\infty$. En déduire la nature de l'intégrale $\int_{0}^{+\infty} \frac{xe^x}{(1+e^x)^2} dx$.

Intégrales à paramètre (avant d'avoir traité le chapitre)

- 1. Vérifier que pour x > 0, $f(x) + f(x+1) = \frac{1}{x+1}$.
- 2. Donner le sens de variation de f. (indication: pour tout 0 < a < b, montrer que f(b) < f(a))
- 3. En utilisant la question 1, déterminer la limite de f en $+\infty$.
- 4. a) Démontrer que : $\forall x > 0$, $f(x) + f(x+1) \leq 2 f(x)$.
 - **b)** Démontrer que : $\forall x > 0$, $f(x) + f(x+1) \ge 2$ f(x+1).
 - c) En déduire un équivalent simple de f en $+\infty$.

Exercice 24

Étude de la fonction Γ

On rappelle que l'intégrale $\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt$ est convergente et :

$$\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \sqrt{2\pi}$$

- 1. Montrer que l'intégrale $\int_{0}^{+\infty} e^{-\frac{t^2}{2}} dt$ est convergente, et calculer sa valeur.
- 2. a) Déterminer, pour tout réel x, la valeur de $\lim_{t\to +\infty} t^{x+1} e^{-t}$.
 - b) En déduire la convergence de l'intégrale $\int_{t}^{+\infty} t^{x-1} e^{-t} dt$, pour tout réel x.
 - c) Déterminer les valeurs du réel x pour lesquelles l'intégrale $\int_0^1 t^{x-1} e^{-t} dt$ Soit f la fonction $x \mapsto \int_1^{+\infty} \frac{1}{t^x(1+t)} dt$. est convergente.
 - d) En déduire que la fonction Gamma d'Euler :

$$\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$$

est définie sur $]0, +\infty[$.

- 3. a) Calculer $\Gamma(1)$.
 - b) Etablir une relation entre $\Gamma(x)$ et $\Gamma(x+1)$, pour tout réel strictement postif x. En déduire la valeur de $\Gamma(n)$, pour tout $n \in \mathbb{N}^*$.
 - c) Démontrer : $\Gamma\left(\frac{1}{2}\right) = \sqrt{2} \int_{0}^{+\infty} e^{-\frac{u^2}{2}} du$.

En déduire : $\forall p \in \mathbb{N}, \ \Gamma\left(\frac{2p+1}{2}\right) = \frac{(2p)!}{2^{2p} \, p!} \sqrt{\pi}.$

Exercice 25

Soit f la fonction définie par $f(x) = \int_{1}^{+\infty} \frac{t^{-x}}{1+t} dt$

- 1. Déterminer l'ensemble de définition de f.
- 2. Quel est le sens de variation de f?
- 3. Soient a, b deux réels tels que $0 < a \le b$, montrer que :

$$0 \leqslant f(a) - f(b) \leqslant \frac{1}{a} - \frac{1}{b}$$

En déduire que f est continue.

4. Déterminer f(x) + f(x+1) pour x > 0. En déduire la limite de f en 0 et en $+\infty$.

Exercice 26

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que f est monotone.
- 3. Montrer que $f(x) + f(x+1) = \frac{1}{x}$ pour x > 0.
- 4. a) En utilisant les questions 2 et 3, déterminer la limite de f en 0.
 - b) Déterminer un équivalent de f en $+\infty$. (on pourra démontrer que : $\forall x > 0$, $f(x) + f(x+1) \leq 2$ f(x) $et \ f(x) + f(x+1) \ge 2 \ f(x+1)$
- 5. Calculer f(1) et $f\left(\frac{1}{2}\right)$.

Exprimer f(n+1) et $f\left(n+\frac{1}{2}\right)$ en fonction de n pour $n \in \mathbb{N}^*$.

6. En déduire que les séries $\sum_{k>1} \frac{(-1)^{k-1}}{k}$ et $\sum_{k>1} \frac{(-1)^{k-1}}{2k-1}$ sont convergentes et calculer leur somme respective.

PSI 2024-2025

Exercice 27

On pose, quand l'intégrale converge, $f(x) = \int_1^{+\infty} \frac{dt}{1 + t + t^{x+1}}$.

- 1. Montrer que le domaine de définition de f est $]0, +\infty[$.
- 2. Montrer que f est décroissante sur $]0, +\infty[$.
- 3. a) Pour x > 0, justifier l'existence de $g(x) = \int_1^{+\infty} \frac{dt}{t(1+t^x)}$.
 - b) Pour x > 0 et $t \ge 1$, simplifier $\frac{1}{t} \frac{t^{x-1}}{1 + t^x}$, puis calculer g(x).
 - c) En déduire que, pour tout x > 0: $0 \le f(x) \le \frac{\ln(2)}{x}$. Déterminer la limite de f en $+\infty$.
- **4.** a) Montrer que : $\forall x > 0, \ 0 \le \frac{\ln(2)}{x} f(x) \le \frac{1}{2x+1}$.
 - b) En déduire la limite et un équivalent de f(x) quand x tend vers 0.

Autre

Exercice 28

Soit f définie par : $f(t) = \frac{t^2 - 1}{(1 + t^2)\sqrt{1 + t^4}}$. On pose $F(x) = \int_0^x f(t) dt$.

1. Montrer la convergence de $I = \int_0^{+\infty} f(t) dt$.

Calculer I à l'aide du changement de variable $u = \frac{1}{t}$.

2. Montrer que, pour tout x > 0, $F(x) = F\left(\frac{1}{x}\right)$.

En déduire qu'il existe $(a,b) \in \mathbb{R}^2$ et une fonction ε tels que :

$$\forall x > 0, \ F(x) = \frac{a}{x} + \frac{b}{x^3} + \frac{1}{x^3} \varepsilon(x)$$
 et $\lim_{x \to +\infty} \varepsilon(x) = 0$

On précisera les valeurs de a et b.

3. Montrer que $G(x) = \ln(x) + \int_1^x F(t) dt$ possède une limite finie en $+\infty$.

Intégrale faussement impropre

Exercice 29

On pose $I = \int_0^1 \frac{x \ln(x)}{1-x} dx$, et pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^1 \frac{x^n \ln(x)}{1-x} dx$$
 et $J_n = \int_0^1 x^n \ln(x) dx$

- 1. Montrer que l'intégrale I est convergente.
- 2. Montrer, pour tout $n \in \mathbb{N}$, que l'intégrale I_n est convergente.
- 3. Montrer que, pour tout $x \in]0,1[, -1 \leqslant \frac{x \ln(x)}{1-x} \leqslant 0$. En déduire que, pour tout $n \in \mathbb{N}^*, -\frac{1}{n} \leqslant I_n \leqslant 0$, puis la limite de I_n , lorsque n tend vers $+\infty$.
- 4. Montrer que l'intégrale J_n est convergente pour tout $n \in \mathbb{N}$, et calculer sa valeur.
- 5. Calculer $\sum_{k=1}^{n} J_k$, pour tout $n \in \mathbb{N}^*$.

En déduire que : $\forall n \in \mathbb{N}^*, \ I = -\sum_{k=2}^{n+1} \frac{1}{k^2} + I_{n+1}.$

Énoncés de concours

Exercice 30 (E3A 2021)

Pour tout entier naturel *n* non nul, on pose : $I_n = \int_1^{+\infty} \exp(-t^n) dt$.

- 1. Justifier, pour tout $n \in \mathbb{N}^*$, l'existence de I_n .
- 2. (Question modifiée en attendant d'avoir accès au théorème de convergence dominée)
 - a) Démontrer : $\forall u \in \mathbb{R}_+, (1+u)^n \geqslant 1+nu$.
 - **b)** En déduire : $\forall n \in \mathbb{N}^*, \ 0 \leqslant I_n \leqslant \int_1^{+\infty} \exp(-1 n(t-1)) \ dt.$
 - c) En déduire la limite de la suite $(I_n)_{n\in\mathbb{N}}$.
- 3. En le justifiant, effectuer le changement de variable $u = t^n$ dans I_n .

Exercice 31 (CCINP 2022)

Partie I – Convergence d'une suite

Soit $n \in \mathbb{N} \setminus \{0\}$. Pour tout $k \in [0, 2n]$, on pose : $a_{k,n} = \frac{\sqrt{2n}}{2^{2n+1}} \binom{2n}{k}$.

Pour tout $m \in \mathbb{N}$, on pose : $I_m = \int_0^1 (1-t^2)^{\frac{m}{2}} dt$.

- 1. Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante.
- 2. Montrer que pour tout $m \in \mathbb{N}$: $I_{m+2} = \frac{m+2}{m+3} I_m$.
- 3. En déduire que pour tout $n \in \mathbb{N}^*$:

$$I_{2n} = \frac{\sqrt{2n}}{2(2n+1) a_{n,n}}, \quad \text{et} \quad I_{2n-1} = \frac{\pi}{\sqrt{2n}} a_{n,n}$$

4. Montrer que pour tout $n \in \mathbb{N}^*$: $1 \leqslant \frac{I_{2n-1}}{I_{2n}} \leqslant \frac{I_{2n-2}}{I_{2n}}$.

En déduire : $\frac{1}{1 + \frac{1}{2n}} \le 2\pi (a_{n,n})^2 \le 1$.

5. En déduire la convergence de la suite $(a_{n,n})_{n\geq 1}$ puis :

$$I_{2n} \underset{n \to +\infty}{\sim} \frac{1}{2} \sqrt{\frac{\pi}{n}}$$

Partie II – Calcul d'une intégrale de Gauss

Pour tout $n \in \mathbb{N}^*$, on pose : $J_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt$.

Pour tout $n \in \mathbb{N}^*$ et pour tout $t \in \mathbb{R}_+$, on pose :

$$u_n(t) = \begin{cases} \left(1 - \frac{t^2}{n}\right)^n & \text{si } 0 \leqslant t \leqslant \sqrt{n} \\ 0 & \text{sinon} \end{cases}$$

Enfin, on considère l'intégrale de Gauss :

$$K = \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} \frac{dt}{\sqrt{2\pi}}$$

- 6. À l'aide d'un changement de variable simple, déduire de la 5 que la suite $(J_n)_{n\in\mathbb{N}^*}$ converge et donner sa limite.
- 7. Montrer que la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}_+ et donner sa limite. (Autrement dit, on cherche, pour tout $t\in\mathbb{R}_+$, la limite de la suite $(u_n(t))_{n\in\mathbb{N}^*}$)
- 8. Montrer que pour tout $x \in \mathbb{R}$, on a : $1 + x \leq e^x$. En déduire que pour tout $n \in \mathbb{N}^*$: $\forall t \in \mathbb{R}_+$, $0 \leq u_n(t) \leq e^{-t^2}$.
- 9. Montrer que l'intégrale K est convergente, puis déduire des questions précédentes une valeur exacte de K.

 (On pourra admettre : $\lim_{n \to +\infty} \int_0^{+\infty} u_n(t) dt = \int_0^{+\infty} \left(\lim_{n \to +\infty} u_n(t) \right) dt$)

Exercice 32 (CCINP 2021)

Dans toute cette partie, on suppose que $\alpha \in]0,1[$. L'objectif est de donner un équivalent de $f_{\alpha}(x)$ quand x tend vers 1.

Pour tout $x \in]0,1[$, on considère l'intégrale : $I(x) = \int_0^{+\infty} \frac{x^t}{t^{\alpha}} dt$.

- 1. Justifier que, pour tout $x \in [0,1[$, l'intégrale I(x) est convergente.
- 2. On rappelle que la fonction Γ d'Euler est définie sur \mathbb{R}_+^* par :

$$\forall s \in \mathbb{R}_+^*, \ \Gamma(s) = \int_0^{+\infty} t^{s-1} e^{-t} dt$$

Pour tout $x \in]0,1[$, déterminer une expression de I(x) faisant intervenir $\ln(x)$, α et $\Gamma(1-\alpha)$.

- 3. Prouver que, pour tout $x \in]0,1[$, la fonction $t \mapsto \frac{x^t}{t^{\alpha}}$ définie pour tout $t \in \mathbb{R}_+^*$ est décroissante sur \mathbb{R}_+^* .
- 4. En déduire, pour tout $x \in]0,1[$, l'encadrement :

$$\int_{1}^{+\infty} \frac{x^{t}}{t^{\alpha}} dt \leqslant f_{\alpha}(x) \leqslant \int_{0}^{+\infty} \frac{x^{t}}{t^{\alpha}} dt$$

5. En déduire un équivalent de $f_{\alpha}(x)$ quand x tend vers 1.

2024-2025

Exercice 33 (CCINP 2020)

Pour x > 0, on note : $F(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-tx} dt$,

$$G(x) = \int_0^{+\infty} e^{-tx} \sin(t) dt \quad \text{et} \quad H(x) = \int_0^{+\infty} e^{-tx} \cos(t) dt$$

- 1. Montrer que : $\forall t \in \mathbb{R}_+, |\sin(t)| \leq t$.
- 2. Montrer que les fonctions F, G et H sont bien définies sur $]0, +\infty[$.
- 3. Montrer que $\lim_{x \to +\infty} F(x) = 0$.
- 4. Montrer que F est de classe \mathscr{C}^1 sur $]0, +\infty[$ et exprimer F' à l'aide de la fonction G.

(Question admise à ce stade de l'année. On pourra utiliser dans la suite : $\forall x > 0, \ F'(x) = -G(x)$)

5. Trouver une expression simple pour G et pour H. (On pourra calculer H(x) + iG(x))

En déduire, pour $\alpha \in]0, +\infty[$, la valeur de $\int_0^{+\infty} e^{-tx} \cos(\alpha t) dt$.

6. En déduire une expression simple pour F. Que vaut F(1)?

Exercice 34 (CCINP 2019)

On considère la fonction f définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ f(x) = \int_0^{+\infty} e^{-t(1-itx)} \ dt.$$

1. Montrer que la fonction f est bien définie sur \mathbb{R} .

Pour tout $p \in \mathbb{N}$, on note $\Gamma_p = \int_0^{+\infty} t^p e^{-t} dt$.

- 2. Pour tout $p \in \mathbb{N}$, justifier l'existence de Γ_p et déterminer une relation entre Γ_{p+1} et Γ_p .
- 3. En déduire, pour tout $p \in \mathbb{N}$, la valeur de Γ_p .

Exercice 35 (E3A 2020)

Soient a un réel strictement positif et f une fonction continue sur \mathbb{R} .

Pour tout λ réel, on pose $I(\lambda) = \int_a^{+\infty} \frac{\lambda - f(t)}{t} dt$, lorsque cela existe.

- 1. Dans cette question, et uniquement cette question, f est la fonction $t \mapsto \cos\left(\frac{t}{1+t^2}\right)$.
 - a) En utilisant un développement asymptotique de f au voisinage de $+\infty$, donner un équivalent de $\lambda f(t)$ lorsque t tend vers l'infini.
 - b) En déduire l'ensemble des valeurs du réel λ pour lesquelles $I(\lambda)$ existe.
 - c) Donner alors un équivalent de $\int_a^x \frac{f(t)}{t} dt$ lorsque x tend vers l'infini.
- 2. On suppose qu'il existe λ et μ deux réels pour lesquels $I(\lambda)$ et $I(\mu)$ existent. Prouver que l'on $a: \lambda = \mu$.
- 3. Pour tout x réel, on pose $H_{\lambda}(x) = \int_{a}^{x} (\lambda f(t)) dt$.
 - a) Justifier que H_{λ} est de classe \mathscr{C}^1 sur \mathbb{R} et préciser $H'_{\lambda}(x)$.
 - b) Démontrer que si H_{λ} est bornée sur \mathbb{R} , alors $I(\lambda)$ existe et :

$$I(\lambda) = \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^{2}} dt$$

- 4. Désormais on suppose que f est continue sur \mathbb{R} et T-périodique (T>0).
 - a) Démontrer que la fonction $\varphi: x \mapsto \int_x^{x+T} f(t) dt$ est constante. Montrer alors que l'on a, pour tout réel x:

$$H_{\lambda}(x+T) - H_{\lambda}(x) = \lambda T - \int_{0}^{T} f(t) dt$$

- b) Montrer qu'il existe une unique valeur λ_0 du réel λ pour laquelle la suite $(H_{\lambda}(a+nT))_{n\in\mathbb{N}}$ est bornée.
- c) Prouver que, dans ce cas, la fonction H_{λ} est périodique et bornée dans \mathbb{R} .

- d) Déterminer alors toutes les valeurs du réel λ pour lesquelles $I(\lambda)$ converge.
- e) Dans le cas où $\lambda_0 \neq 0$, déterminer un équivalent de $\int_a^x \frac{f(t)}{t} dt$ lorsque x tend vers l'infini.
- 5. Pour tout entier naturel n non nul, on pose :

$$A_n = \int_0^{\pi/2} \frac{|\sin(nt)|}{\sin(t)} dt$$
 et $B_n = \int_0^{\pi/2} \frac{|\sin(nt)|}{t} dt$

- a) Prouver que A_n existe. On admettra qu'il en est de même pour B_n .
- b) Déterminer un équivalent au voisinage de 0 de la fonction :

$$t \mapsto \frac{1}{t} - \frac{1}{\sin(t)}$$

- c) Démontrer que la suite $(A_n B_n)_{n \in \mathbb{N}^*}$ est bornée.
- d) On effectue dans B_n le changement de variable u = nt.
 - (i) Donner un équivalent de B_n lorsque n tend vers l'infini. On pourra utiliser les résultats établis à la question 4.
 - (ii) En déduire un équivalent de A_n lorsque n tend vers l'infini.