Réduction des endomorphismes et des matrices carrées

Exercice 1 (d'après oraux CCINP 2022 - MP)

Soit n un entier naturel tel que $n \ge 2$.

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n.

On pose : $\forall P \in E, f(P) = P - P'$.

- 1. Démontrer que f est bijectif de deux manières :
 - a) sans utiliser de matrice f,
 - b) en utilisant une matrice f.
- 2. Soit $Q \in E$. Trouver P tel que f(P) = Q.

Indication : si $P \in E$, quel est le polynôme $P^{(n+1)}$?

3. L'endomorphisme f est-il diagonalisable?

Exercice 2 (d'après oraux CCINP 2022 - MP)

Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.

- 1. Déterminer une base de Ker(f).
- 2. L'endomorphisme f est-il surjectif?
- 3. Déterminer une base de Im(f).
- 4. A-t-on : $\mathcal{M}_2(\mathbb{R}) = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$?

Exercice 3 (d'après oraux CCINP 2022 - MP)

Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} .

Soit
$$f \in \mathcal{L}(E)$$
 tel que $f^2 - f - 2$ id $= 0_{\mathcal{L}(E)}$.

- 1. a) Prouver que : $E = \text{Ker}(f + \text{id}) \oplus \text{Ker}(f 2 \text{id})$.
 - b) Dans cette question, on suppose que E est de dimension finie. Prouver que : Im(f + id) = Ker(f - 2 id).

Exercice 4 (d'après oraux CCINP 2022 - MP)

Soit u un endomorphisme d'un espace vectoriel E sur le corps \mathbb{K} (= \mathbb{R} ou \mathbb{C}).

On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

- 1. Démontrer: $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], (PQ)(u) = P(u) \circ Q(u).$
- 2. a) Démontrer : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], P(u) \circ Q(u) = Q(u) \circ P(u).$
 - b) Démontrer que, pour tout $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]$:

P polynôme annulateur de $u \Rightarrow PQ$ polynôme annulateur de u

3. Soit $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$. Écrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

Exercice 5 (d'après oraux CCINP 2022 - MP)

Soit f un endomorphisme d'un espace vectoriel E de dimension finie.

- 1. Démontrer : $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f) \Rightarrow \operatorname{Im}(f) = \operatorname{Im}(f^2)$.
- 2. a) Démontrer : $\operatorname{Im}(f) = \operatorname{Im}(f^2) \Leftrightarrow \operatorname{Ker}(f) = \operatorname{Ker}(f^2)$.
 - b) Démontrer : $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f) \Rightarrow \operatorname{Im}(f) = \operatorname{Im}(f^2)$.

Exercice 6 (d'après oraux CCINP 2022 - MP)

Soit la matrice
$$M=\begin{pmatrix} 0 & a & c \\ b & 0 & c \\ b & -a & 0 \end{pmatrix}$$
 où $a,\,b,\,c$ sont des réels.

La matrice M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? dans $\mathcal{M}_3(\mathbb{C})$?

Exercice 7 (d'après oraux CCINP 2022 - MP)

Soit la matrice
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

- 1. Démontrer que A est diagonalisable de quatre manières :
 - a) sans calcul,
 - b) en déterminant les valeurs propres et les sous-espaces propres,
 - c) en utilisant le rang de la matrice,
 - d) en calculant A^2 .
- ${\it 2.}$ On suppose que A est la matrice d'un endomorphisme u d'un espace euclidien dans une base orthonormée.

Trouver une base orthonormée dans laquelle la matrice de u est diagonale.

Exercice 8 (d'après oraux CCINP 2022 - MP)

On considère la matrice $A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$ où a est un réel.

- 1. Déterminer le rang de A.
- 2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable?

Exercice 9 (d'après oraux CCINP 2022 - MP)

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

- 1. Déterminer les valeurs propres et vecteurs propres de A. La matrice A est-elle diagonalisable?
- 2. Soit $(a, b, c) \in \mathbb{C}^3$ et $B = a I_3 + b A + c A^2$, où I_3 désigne la matrice identité d'ordre 3. Déduire de la question 1. les éléments propres de B.

Exercice 10 (d'après oraux CCINP 2022 - MP)

Soit n un entier naturel non nul.

Soit f un endomorphisme d'un espace vectoriel E de dimension n, et soit $e = (e_1, \ldots, e_n)$ une base de E.

2

On suppose : $f(e_1) = \ldots = f(e_n) = v$, où v est un vecteur donnée de E.

- 1. Donner le rang de f.
- 2. L'endomorphisme f est-il diagonalisable? (discruter en fonction du vecteur v)

Exercice 11 (d'après oraux CCINP 2022 - MP)

On pose
$$A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$$
.

- 1. Déterminer les valeurs propres et les vecteurs propres de A.
- 2. Déterminer toutes les matrices qui commutent avec la matrice $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$. En déduire que l'ensemble des matrices qui commutent avec A est Vect (I_2, A) .

Exercice 12 (d'après oraux CCINP 2022 - MP)

Soient u et v deux endomorphismes d'un \mathbb{R} -espace vectoriel E.

- 1. Soit λ un réel non nul. Prouver que si λ est valeur propre de $u \circ v$, alors λ est valeur propre de $v \circ u$.
- 2. On considère, sur $E = \mathbb{R}[X]$ les endomorphismes u et v définis par $u: P \mapsto \int_1^X P$ et $v: P \mapsto P'$. Déterminer $\operatorname{Ker}(u \circ v)$ et $\operatorname{Ker}(v \circ u)$. Le résultat de la question 1. reste-t-il vrai pour $\lambda = 0$?
- 3. Si E est de dimension finie, démontrer que le résultat de la première question reste vrai pour $\lambda = 0$. Indication : penser à utiliser le déterminant.

Exercice 13 (d'après oraux CCINP 2022 - MP)

- 1. Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
 - a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base $(1, X a, (X a)^2, \dots, (X a)^n)$.
 - **b)** Soit $r \in \mathbb{N}^*$. En déduire :

$$a$$
 est une racine de P d'ordre de multiplicité $r \iff \left\{ \begin{array}{l} P^{(r)}(a) \neq 0 \\ \forall k \in [\![0,r-1]\!], P^{(k)}(a) = 0 \end{array} \right.$

2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.

Exercice 14 (d'après oraux CCINP 2022 - MP)

Soient $a_0, a_1, \ldots, a_n, n+1$ réels deux à deux distincts.

- 1. Montrer que si b_0, b_1, \ldots, b_n sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant : $\deg(P) \leq n$ et $\forall i \in [0, n], P(a_i) = b_i$.
- **2.** Soit $k \in [0, n]$.

Expliciter ce polynôme
$$P$$
, que l'on notera L_k , lorsque : $\forall i \in [0, n]$, $b_i = \begin{cases} 0 & \text{si } i \neq k \\ 1 & \text{si } i = k \end{cases}$

Exercice 15 (d'après oraux CCINP 2022 - MP)

1. Soit E un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Soit $u \in \mathcal{L}(E)$. Soit $P \in \mathbb{K}[X]$.

Prouver que si P annule u alors toute valeur propre de u est racine de P.

2. Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $E = \mathcal{M}_n(\mathbb{R})$.

Soit
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$
 la matrice de E définie par $a_{i,j} = \begin{cases} 0 & \text{si } i = j \\ 1 & \text{si } i \ne j \end{cases}$

Soit $u \in \mathcal{L}(E)$ défini par : $\forall M \in E, u(M) = M + \operatorname{tr}(M)$ A

a) Prouver que le polynôme $X^2 - 2X + 1$ est annulateur de u.

b) L'endomorphisme u est-il diagonalisable?

Justifier vorte réponse en utilisant deux méthodes (avec ou sans la question 1.).

Exercice 16 (d'après oraux CCINP 2022 - MP)

On désigne par K le corps des réels ou celui des complexes.

Soient a_1 , a_2 , a_3 trois scalaire distincts donnés de \mathbb{K} .

- 1. Montrer que $\Phi: \mathbb{K}_2[X] \to \mathbb{K}^3$ $P \mapsto (P(a_1), P(a_2), P(a_3))$ est un isomorphisme d'espaces vectoriels.
- 2. On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose : $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$.
 - a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - b) Exprimer les polynômes L_1 , L_2 et L_3 en fonction de a_1 , a_2 et a_3 .
- 3. Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- **4.** Application : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Exercice 17 (d'après oraux CCINP 2022 - MP)

On considère la matrice
$$A = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 3 & -1 \\ -1 & 2 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- ${\it 1.}$ Montrer que A n'admet qu'une seule valeur propre que l'on déterminera.
- 2. La matrice A est-elle inversible? Est-elle diagonalisable?
- 3. Déterminer, en justifiant, le polynôme minimal de A.
- 4. Soit $n \in \mathbb{N}$. Déterminer le reste de la division euclidienne de X^n par $(X-1)^2$ et en déduire la valeur de A^n .

Exercice 18

Déterminer les éléments propres et réduire les matrices suivantes :

a)
$$\begin{pmatrix} -1 & 6 & -6 \\ 3 & -8 & 10 \\ 3 & -9 & 11 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 4 & -1 & 5 \\ -2 & -1 & -1 \\ -4 & 1 & -5 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \\ 0 & 0 & -2 \end{pmatrix}$ e) $\begin{pmatrix} 1 & 1 & 4 \\ 3 & -1 & 4 \\ -4 & 0 & -6 \end{pmatrix}$

Exercice 19

Étudier, en fonction des paramètres, la diagonalisabilité des matrices suivantes :

a)
$$\begin{pmatrix} -1 & 2-\alpha & -\alpha \\ -\alpha & 1 & -\alpha \\ 2 & \alpha-2 & \alpha+1 \end{pmatrix}$$
 b) $\begin{pmatrix} a & b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{pmatrix}$

Exercice 20

Soient
$$(a, b, c) \in \mathbb{C}^3$$
, $M = \begin{pmatrix} a & c & b \\ c & a+b & c \\ b & c & a \end{pmatrix}$ et $K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

- 1. Diagonaliser K.
- 2. Exprimer M à l'aide des puissances de K et en déduire une diagonalisation de M.

4

Exercice 21

Soit
$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$$
 où $(a, b, c) \in \mathbb{R}^3$.

- 1. Déterminer un polynôme annulateur de degré 3 de A.
- 2. La matrice A est-elle inversible? Est-elle diagonalisable?
- 3. Montrer que les valeurs propres de A^2 sont négatives ou nulles.

Exercice 22

Soit $A \in \mathcal{M}_5(\mathbb{R})$ inversible telle que $A^3 - 3A^2 + 2A = 0$ et tr(A) = 6.

Déterminer le polynôme caractéristique de A.

Exercice 23

Déterminer les éléments propres et étudier la diagonalisabilité des matrices carrées de taille $n \in \mathbb{N}^*$ suivantes :

- a. La matrice A dont tous les coefficients valent 1.
- **b.** La matrice B dont le coefficient d'indice (i, j) vaut 1 si i + j est pair, et 0 sinon.
- c. La matrice N dont les coefficients de la première colonne, de la dernière colonne et de la diagonale sont égaux à 1, et les autres à 0.

Exercice 24

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A + I$.

- 1. La matrice A est-elle diagonalisable sur \mathbb{R} ? sur \mathbb{C} ?
- 2. Montrer que A est inversible et que det(A) > 0.

Exercice 25

Soit n un entier naturel supérieur ou égal à 2.

On note $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n, et $\mathscr{B} = (1, X, \dots, X^n)$ la base canonique de E.

On note, pour tout polynôme P de E:

$$\varphi(P) = \frac{1}{n}X(1-X)P' + XP$$

- 1. Déterminer la matrice représentative de f dans la base \mathscr{B} .
- **2.** On pose, pour tout $k ext{ de } [0, n] : P_k = X^k (1 X)^{n-k}$.
 - a) Pour tout k de [0, n], calculer $\varphi(P_k)$.
 - b) L'endomorphisme f est-il diagonalisable?

Exercice 26

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et soit $P \in \mathcal{M}_n(\mathbb{R})$.

On note
$$B = \begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix}$$
 et $Q = \begin{pmatrix} P & P \\ -P & P \end{pmatrix}$.

- 1. Montrer que si P est inversible, alors Q l'est, et donner alors Q^{-1} en fonction de P^{-1} .
- 2. Étudier la diagonalisabilité de B en fonction de celle de A.

Exercice 27

Soit $A \in \mathcal{M}_n(\mathbb{C})$ de rang 1 (où $n \ge 2$).

Donner une condition nécessaire et suffisante portant sur tr(A) pour que A soit diagonalisable.

Exercice 28

Soit $(A, B) \in \mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C})$ un couple de matrices qui commutent.

Soit
$$M = \begin{pmatrix} A & B \\ 0 & A \end{pmatrix}$$
.

- 1. Soit $P \in \mathbb{C}[X]$. Exprimer P(M) en fonction de P(A), P'(A) et B.
- 2. Montrer que si A est diagonalisable et B est nulle, alors M est diagonalisable.
- 3. Démontrer la réciproque.

Exercice 29

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice à coefficients positifs et telle que la somme des coefficients de chaque ligne de A est égale à 1.

- 1. Montrer que 1 est valeur propre de A, et que si $\lambda \in \mathbb{C}$ est valeur propre de A, alors $|\lambda| \leq 1$. Indication. Considérer un coefficient de module maximal dans X tel que $AX = \lambda X$.
- 2. On suppose les coefficients de A strictement positifs. Montrer que le sous-espace propre de A associé à 1 est une droite, et que 1 est la seule valeur propre de A de module 1.

Exercice 30

Le but de l'exercice est de caractériser les matrices carrées de même taille ayant une valeur propre commune.

Soit
$$(A, B) \in \mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C})$$
.

- 1. On suppose dans cette question que A et B ont au moins une valeur propre commune.
 - a) Montrer qu'il existe $\alpha \in \mathbb{C}$ et $(X,Y) \in \mathcal{M}_{n,1}(\mathbb{C}) \times \mathcal{M}_{n,1}(\mathbb{C})$ non nuls, tels que ${}^t\!AX = \alpha X$ et $BV = \alpha V$
 - b) En déduire qu'il existe $M \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que MA = BM.
- 2. On suppose dans cette question qu'il existe M dans $\mathcal{M}_n(\mathbb{C})$ non nulle telle que MA = BM.
 - **a.** Montrer que pour tout $P \in \mathbb{C}[X]$, on a MP(A) = P(B)M.
 - b. En déduire que A et B ont au moins une valeur propre commune.

Exercice 31

Soient
$$E = \mathbb{K}[X]$$
 et $u : E \to E$, $P \mapsto X(X-1)P' - XP$.

- 1. Montrer que u est un endomorphisme de E.
- 2. Déterminer les éléments propres de u.

Exercice 32

Soit
$$E = \mathscr{C}^0([0;1], \mathbb{R})$$
.

Pour
$$f \in E$$
, on définit $\varphi(f): [0;1] \to \mathbb{R}$ par $\varphi(f)(0) = f(0)$ et $\varphi(f)(x) = \frac{1}{x} \int_0^x f(t) dt$ si $x \neq 0$.

- 1. Montrer que $\varphi \in \mathcal{L}(E)$.
- 2. Montrer que 0 n'est pas une valeur propre de φ .
- 3. Montrer que 1 est une valeur propre de φ et trouver l'espace propre associé.

4. Trouver les autres valeurs propres.

Exercice 33

Soient $E = \mathbb{R}^{\mathbb{N}}$ et $T \in \mathcal{L}(E)$ qui à $(u_n)_{n \in \mathbb{N}}$ associe $(w_n)_{n \in \mathbb{N}}$ définie par : $w_n = \frac{1}{n+1} \sum_{k=0}^n u_k$.

Déterminer les éléments propres de T.

Exercice 34

Soit φ l'endomorphisme de $\mathbb{C}_n[X]$ qui à tout $P \in \mathbb{C}_n[X]$ associe le polynôme $\varphi(P)(X) = P(1 - iX)$, où $i^2 = -1$ et $n \in \mathbb{N}^*$.

- 1. Calculer φ^4 . Montrer que φ est diagonalisable et donner les valeurs propres possibles de φ .
- 2. Montrer que 1 est vraiment valeur propre de φ .
- 3. Préciser le spectre de φ en fonction de n.

Exercice 35

Soit l'application $u: P \in \mathbb{R}_n[X] \mapsto P' - XP''$.

- 1. Monter que u est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Trouver la seule valeur propre possible λ de u.
- 3. L'endomorphisme u est-il diagonalisable? inversible?
- 4. Calculer le sous espace propre associé à λ .

Exercice 36

Soit n un entier ≥ 4 .

On définit $\Phi: P \in \mathbb{R}_n[X] \mapsto XP'' + (X-4)P' - 3P$.

- 1. Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Est-il diagonalisable?
- 3. Déterminer la dimension puis une base du noyau de Φ .

Exercice 37

Soit
$$f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}), \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & a \\ b & c \end{pmatrix}$$
.

- 1. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer les éléments propres de f.
- 3. L'endomorphisme f est-il diagonalisable? inversible?

Exercice 38

Soit
$$\phi: M \in \mathcal{M}_n(\mathbb{C}) \mapsto M + \operatorname{tr}(M)I_n$$
.

- 1. Montrer que ϕ est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$.
- 2. Trouver un polynôme annulateur de ϕ de degré 2.
- 3. L'endomorphisme ϕ est-il diagonalisable?
- 4. Donner le polynôme caractéristique et la trace de ϕ .

Exercice 39

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et soit f_A l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $f_A(M) = AM$.

- 1. Montrer que pour tout $P \in \mathbb{R}[X]$, $P(f_A) = f_{P(A)}$.
- 2. Montrer que A est diagonalisable si et seulement si f_A l'est.
- 3. Montrer que $Sp(f_A) = Sp(A)$.
- 4. Expliciter χ_{f_A} en fonction de χ_A .

Exercice 40

Soit E est un espace vectoriel de dimension finie.

Soit s est une symétrie vectorielle de E. On pose pour $u \in \mathcal{L}(E)$, $\varphi(u) = \frac{1}{2} (s \circ u + u \circ s)$.

- 1. Montrer que φ est un endomorphisme de $\mathcal{L}(E)$
- 2. Calculer φ^3 et en déduire un polynôme annulateur de φ .
- 3. L'endomorphisme φ est-il diagonalisable?

Exercice 41

Soit E un espace vectoriel de dimension finie.

Soient u et v deux endomorphismes diagonalisables de E.

- 1. Montrer que si u et v sont simultan'ement diagonalisables, c'est-à-dire s'il existe une base de diagonalisation commune à u et v, alors u et v commutent.
- 2. On suppose dans cette question que u et v commutent. Montrer que v stabilise chaque sous-espace propre de u, et que l'endomorphisme qu'il y induit est diagonalisable. En déduire que u et v sont simultanément diagonalisables.

Exercice 42

Soit E un \mathbb{C} -espace vectoriel de dimension finie.

Soit
$$u \in \mathcal{L}(E)$$
.

- 1. Montrer que si u est diagonalisable, alors u^2 est diagonalisable et $Ker(u) = Ker(u^2)$.
- 2. Montrer la réciproque.

Indication: montrer que si un polynôme XP(X) annule u^2 , alors $XP(X^2)$ annule u.

Exercice 43

Déterminer les matrices
$$M \in \mathcal{M}_3(\mathbb{R})$$
 telles que $M^2 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Exercice 44

Soit
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 1 & 4 & -1 \end{pmatrix}$$
.

- 1. Déterminer le spectre de A et trouver une matrice diagonale D semblable à A.
- 2. Montrer que toute matrice commutant avec D est nécessairement diagonale.
- 3. Soit $P = X^7 + X + 1$. Déterminer les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que P(M) = A.

Exercice 45

Soit $A = (a_{i,j}) \in \mathcal{M}_4(\mathbb{R})$, où $a_{i,j} = 1$ si i + j est pair, $a_{i,j} = 2$ sinon.

- 1. Trouver les éléments propres de A.
- 2. Résoudre $X^2 + 2X = A$ dans $\mathcal{M}_4(\mathbb{R})$.

Exercice 46

Trouver les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^5 = M^2$ et $\operatorname{tr}(M) = 3$.

Exercice 47

Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M^3 - 4M^2 - 4M = 0$ et $\operatorname{tr}(M) = 0$.

Exercice 48

On cherche les matrices symétriques M de $\mathcal{M}_n(\mathbb{R})$ vérifiant l'équation (1) : $M^3 + 4M^2 + 5M = 0_n$.

- 1. Justifier que ces matrices sont diagonalisables et que leurs valeurs propres sont racines du polynôme $P(X) = X^3 + 4X^2 + 5X$.
- 2. En déduire toutes les solutions symétriques de (1).

Exercice 49

Déterminer le terme général des suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies par $u_0=v_0=u_0=1$ et les relations de récurrence suivantes :

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 5u_n + v_n - w_n, \\ v_{n+1} = 2u_n + 4v_n - 2w_n, \\ w_{n+1} = u_n - v_n + 3w_n. \end{cases}$$

Exercice 50

Déterminer le terme général des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par :

- **a.** $u_0 = u_1 = u_2 = 1$ et $u_{n+3} = -(u_{n+2} + u_{n+1} + u_n)$ pour tout $n \in \mathbb{N}$.
- **b.** $v_0 = 1$, $v_1 = v_2 = 0$ et $v_{n+3} = 3v_{n+2} 4v_n$ pour tout $n \in \mathbb{N}$.

Indication : raisonner matriciellement pour ramener le problème au calcul des puissances d'une matrice carrée de taille 3, et procéder par trigonalisation.

Exercice 51

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Donner une condition nécessaire et suffisante sur A pour qu'il existe $S \in \mathcal{S}_n(\mathbb{R})$ vérifiant $A = S^2 + S + I_n$.
- 2. À quelle condition supplémentaire y a-t-il unicité d'une telle matrice S?

Exercice 52

Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$.

Soit $u \in \mathcal{L}(E)$ un endomorphisme admettant n valeurs propres distinctes.

- 1. Montrer que u est diagonalisable et que si $f \in \mathcal{L}(E)$ commute avec u, alors toute base de diagonalisation de u est une base de diagonalisation de f.
 - En déduire la dimension du sous-espace $\mathcal{C}(u) = \{ f \in \mathcal{L}(E) \mid f \circ u = u \circ f \}$ de $\mathcal{L}(E)$.
- 2. Dénombrer les sous-espaces vectoriels de E stables par u.

Exercice 53

Soient $f \in \mathcal{L}(\mathbb{R}^3)$ et \mathcal{C} l'ensemble des endomorphismes $g \in \mathcal{L}(\mathbb{R}^3)$ tels que $g \circ f = f \circ g$.

- 1. Montrer que \mathcal{C} est un espace vectoriel.
- 2. On suppose que f possède trois valeurs propres distinctes. Déterminer la dimension de \mathcal{C} .
- 3. On suppose que $f^3 = 0$ et $f^2 \neq 0$. Déterminer la dimension de \mathcal{C} .
- 4. Trouver f tel que \mathcal{C} soit de dimension 5.