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CH XIII (1/2) : Endomorphismes d’un espace
euclidiens - Isométries vectorielles

Rappels

• Un espace euclidien est la donnée d’un couple
(
E, ⟨·, ·⟩

)
si :

× E un espace vectoriel RÉEL.

× E est de dimension finie.

× ⟨·, ·⟩ est un produit scalaire.

(un espace euclidien est un espace préhilbertien réel de dimension finie)

• Un espace euclidien
(
E, ⟨·, ·⟩

)
est toujours muni d’une norme (dite eucli-

dienne) issue du produit scalaire. Plus précisément :

∥ · ∥ : E → R+

x 7→
√
⟨x, x⟩

En particulier : ∀x ∈ E, ∥x ∥2 = ⟨x, x ⟩

• Tout R-espace vectorielE de dimension finie peut être muni d’une structure
euclidienne. Pour ce faire, il suffit de choisir une base B de E et de munir
E du produit scalaire :

⟨ ·, · ⟩B : E × E → R

(x, y) 7→ t
(
MatB(x)

)
×MatB(y)

On remarque au passage que B est une base orthonormée pour ⟨ ·, · ⟩B.

• Inversement, tout espace euclidien
(
E, ⟨·, ·⟩

)
admet une base orthonormée.

Pour obtenir une telle base, il suffit d’appliquer le procédé d’orthonorma-
lisation de Gram-Schmidt à n’importe quelle base B de E. Rappelons de
plus que si B est une base orthonormale : ⟨·, ·⟩ = ⟨·, ·⟩B.

• Les bases orthonormées sont des bases adaptées aux calculs. Si B =
(e1, . . . , en) est une base orhtonormale alors :

∀x ∈ E, x =
n∑

k=1

⟨x, ek⟩ · ek

• Rappelons enfin que si :

×
(
E, ⟨·, ·⟩

)
est un espace préhilbertien RÉEL (de dimension finie ou non).

× F un sous-espace vectoriel de E de dimension finie.

alors :
E = F ⊕ F⊥

En particulier, dans un espace euclidien, F et F⊥ sont toujours des espaces
supplémentaires dans E.

I. Isométries vectorielles

I.1. Définitions

Définition

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

On note ∥ · ∥ la norme euclidienne sur E.

Soit f ∈ L (E).

• On dit que l’endomorphisme f est une isométrie de E (ou un endomor-
phisme orthogonal de E), s’il conserve la norme, c’est-à-dire si :

∀x ∈ E, ∥f(x)∥ = ∥x∥

Autrement dit, un endomorphisme de E est une isométrie vectoriel s’il
conserve la norme.

• On note O(E) l’ensemble des isométries de E.
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Remarque

• On peut s’intéresser à l’étymologie du terme isométrie. Il est formé :

× du préfixe iso (qui provient du grec ancien isos) qui signifie égal.
Ce préfixe se retrouve dans les termes : isocèle (du grec ancien isoskelês -
« aux jambes égales »), isomorphe (isos et morphé - « forme »), isobares
(lignes de même pression atmosphérique), . . .

× du suffixe métrie (qui provient du grec ancien métron) qui signifie me-
sure.
Ce suffixe se retrouve notamment dans le terme goniomètre (du grec
ancien gônia - « angle ») ou dans le terme trigonométrie (trigonos -
« triangulaire »).

• On peut citer des premiers exemples d’isométries vectorielles :

× l’application idE est évidemment une isométrie vectorielle.

× les projecteurs p qui ne coïncident pas avec idE (c’est-à-dire les applica-
tions p ∈ L (E) telle que p◦p = p et Im(p) ̸= E), ne sont JAMAIS des iso-
métries vectorielles. Tout simplement car pour tout élément x ∈ Ker(p)
tel que x ∈ Ker(p) :

∥p(x)∥ = ∥0E∥ = 0 ̸= ∥x∥

× les symétries s (applications s ∈ L (E) telles que s ◦ s = idE) ne sont
pas forcément des isométries vectorielles. Plus précisément, seules les
symétries orthogonales sont des isométries.

• La discussion sur les projecteurs permet de mettre en avant une propriété
important des isométries vectorielles : ce sont forcément des endomor-
phismes f ∈ L (E) injectifs. En effet, si ce n’est pas le cas (c’est-à-dire
si Ker(f) ̸= {0E}) alors il existe x ̸= 0E tel que x ∈ Ker(f). Ainsi :

∥f(x)∥ = ∥0E∥ = 0 ̸= ∥x∥

L’espace vectoriel E étant de dimension finie, on en conclut que les isomé-
tries vectorielles sont des automorphismes.

I.2. Caractérisation des isométries vectorielles

Théorème 1.
Soit

(
E, ⟨·, ·⟩

)
un espace euclidien.

On note ∥ · ∥ la norme euclidienne sur E.
Soit f ∈ L (E).

L’endomorphisme f est une iométrie vectorielle

⇔ L’endomorphisme f conserve la norme

⇔
L’endomorphisme f conserve le produit scalaire, c’est-à-dire :
∀(x, y) ∈ E × E, ⟨ f(x), f(y) ⟩ = ⟨x, y⟩

⇔ L’image par f d’une base orthonormée est une base
orthonormée

⇔ f(B0) =
(
f(e1), . . . , f(en)

)
est une base orthonormée de E

Démonstration.
1) C’est la définition.
2) (⇒) Supposons que f conserve la norme.

Rappelons les identités de polarisation :

∀(x, y) ∈ E2, ⟨x, y⟩ =
1

2

(
∥x+ y∥2 − ∥x∥2 − ∥y∥2

)
=

1

4

(
∥x+ y∥2 − ∥x− y∥2

)
Soit (x, y) ∈ E × E. Alors :

⟨ f(x), f(y) ⟩ =
1

2

(
∥f(x) + f(y)∥2 − ∥f(x)∥2 − ∥f(y)∥2

)
=

1

2

(
∥f(x+ y)∥2 − ∥f(x)∥2 − ∥f(y)∥2

)
=

1

2

(
∥x+ y∥2 − ∥x∥2 − ∥y∥2

)
= ⟨x, y⟩
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(⇐) Supposons que f conserve le produit scalaire. Alors :

∥f(x)∥ =
√
⟨f(x), f(x)⟩

=
√
⟨x, x⟩ = ∥x∥

3) (⇒) Supposons que f conserve la norme (et donc le produit scalaire
d’après le point précédent).
Soit B = (e1, . . . , en) une base orthonormée.
Démontrons que B′ =

(
f(e1), . . . , f(en)

)
est une base orthonormée.

Soit (i, j) ∈ J1, nK2.

⟨ f(ei), f(ej) ⟩ = ⟨ei, ej⟩ = δi,j
(car B est une
base orthonormée)

(⇐) Supposons que l’image d’une base orthonormée est une base ortho-
normée.

Soit B0 = (e1, . . . , en) une base orthonormée de E.
Alors B1 =

(
f(e1), . . . , f(en)

)
est aussi une base orthonormée de E.

Soit x ∈ E. Notons (x1, . . . , xn) les coordonnées de x dans la base

B. Alors : x =
n∑

i=1
xi · ei et :

× ∥x∥2 =
∥∥∥∥ n∑

i=1
xi · ei

∥∥∥∥2 = n∑
i=1

x2i car B0 est une BON.

×
∥∥f(x)∥∥2 = ∥∥∥∥ n∑

i=1
xi · f(ei)

∥∥∥∥2 = n∑
i=1

x2i car B1 est une BON.

I.3. L’ensemble O(E) est un sous-groupe de GL(E)

Théorème 2.
Soit

(
E, ⟨·, ·⟩

)
un espace euclidien.

1) O(E) ⊂ GL(E)

2) La loi ◦ est une loi de composition interne sur O(E).
Cette loi vérifie les propriétés suivantes :
a. ∀(f, g, h) ∈

(
O(E)

)2
, f ◦ (g ◦ h) = (f ◦ g) ◦ h (associativité)

b. ∃ 1O(E) ∈ O(E), ∀f ∈ O(E), f ◦ 1O(E) = 1O(E) ◦ f = f
(existence d’un
élément identité)

(cet élément identité n’est autre que 1O(E) = idE)

c. ∀f ∈ O(E),∃g ∈ O(E), f ◦ g = g ◦ f = id
(g inverse de f ,
noté g = f−1)

Ces propriétés font de O(E) un groupe.

L’ensemble O(E) est alors nommé groupe orthogonal de E

Remarque
• La notion de groupe n’est pas officiellement au programme de PSI. Le

terme ne sera pas utilisé (sauf s’il venait à être rappelé) dans un écrit de
concours.

• Le couple (GL(E), ◦) est un groupe car la loi ◦ vérifie les propriétés a., b.
et c. citées ci-dessus.

• Un groupe est une structure algébrique au même sens qu’un espace vecto-
riel en est une. La démarche pour démontrer qu’un ensemble muni d’une
loi est un groupe est similaire à celle pour permettant de démontrer qu’un
ensemble est un espace vectoriel. Il y a essentiellement deux manière de
procéder :
× soit on vérifie tous les axiomes de défintion d’un groupe,
× soit on démontre que l’ensemble considéré est un sous-groupe d’un groupe

de référence. Pour démontrer que (F,⊤) est un sous-groupe de (E,⊤),
on démontre que F est une partie non vide de E et que l’ensemble F est
stable par la loi ⊤. Il faut alors comprendre que le sous-groupe F hérite
des propriétés a., b. et c. qui sont vérifiées par le sur-goupe E.
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Démonstration.

(i) O(E) ⊂ GL(E)

(ii) O(E) ̸= ∅ car 1GL(E) = idE ∈ O(E)

(iii) Démontrons que O(E) est stable par la loi ◦.
Soit (f, g) ∈ O(E). Soit x ∈ E.

∥(f ◦ g)(x)∥ = ∥f
(
g(x)

)
∥

= ∥g(x)∥ (car f ∈ O(E))

= ∥x∥ (car g ∈ O(E))

I.4. Stabilité de l’orthogonal d’un sous-espace stable par iso-
métrie vectorielle

Théorème 3.

0) Supposons : f ∈ GL(E).

L’espace F est stable par f ⇔ L’espace F est stable par f−1

1) Supposons : f ∈ O(E).

∀(x, y) ∈ E2, ⟨f(x), f(y)⟩ = ⟨x, y⟩

⇔ ∀(x, y) ∈ E2, ⟨f(x), y⟩ = ⟨x, f−1(y)⟩

2) Supposons : f ∈ O(E).

L’espace F est stable par f ⇔ L’espace F⊥ est stable par f

(rappelons : F est stable par f ⇔ ∀u ∈ F , f(u) ∈ F )

Démonstration.
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II. Matrices orthogonales

II.1. Définition

Définition

Soit n ∈ N∗.

Soit A ∈Mn(R)

• On dit que la matrice A est orthogonale si tA×A = In.

• On note On(R) (ou O(n)) l’ensemble des matrices orthogonales.

II.2. Caractérisation des matrices orthogonales

Théorème 4.

Soit n ∈ N∗.

Soit A ∈Mn(R)

La matrice A est orthogonale

⇔ tA×A = In

⇔ A× tA = In

⇔ A est inversible et A−1 = tA

⇔ Les colonnes de A constituent une base orthonormée de Mn,1(R)

⇔ Les lignes de A constituent une base orthonormée de M1,n(R)

Démonstration.
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II.3. Lien entre matrices orthogonales et espaces euclidiens

II.3.a) Les matrices orthogonales sont des matrices de changement
de base orthonormée

Théorème 5.

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit B0 une base orthonormée de E.

Soit B une base de E.

La base B est orthonormée ⇔ La matrice PB0,B est orthogonale

Démonstration.

II.3.b) Les matrices orthogonales sont les représentations matri-
cielles, dans une base orthonormée, des isométries vecto-
rielles

Théorème 6.

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

Soit B une base de E.

Soit f ∈ L (E).

1) Si la base B est une base orthonormée de E alors :

f ∈ O(E) ⇔ MatB(f) ∈ On(E)

2) Si la base B est une base orthonormée de E, l’application linéaire :

ψ : f 7→ MatB(f)

O(E) → On(E)

est un isomorphisme.

Démonstration.
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II.4. L’ensemble On(R) est un sous-groupe de GLn(R)

Théorème 7.

Soit n ∈ N∗.

1) On(R) ⊂ GLn(R)

2) La loi × est une loi de composition interne sur On(R).
Cette loi vérifie les propriétés suivantes :

a. ∀(A,B,C) ∈
(
On(R)

)2
, A× (B × C) = (A×B)× C

(associativité)

b. ∃ 1On(R) ∈ On(R),∀A ∈ On(R), A× 1On(R) = 1On(R) ×A = A

(existence d’un élément identité)

(cet élément identité n’est autre que 1On(R) = In)

c. ∀A ∈ On(R),∃B ∈ On(R), A×B = B ×A = In
(B inverse de A, noté B = A−1)

Ces propriétés font de On(R) un groupe.

L’ensemble On(R) est alors nommé groupe orthogonal.

3) ∀A ∈Mn(R), A ∈ On(R) ⇒
(
det(A)

)2
= 1

4) L’ensemble des matrices de On(R) de déterminant 1 constitue aussi un
groupe appelé groupe spécial orthogonal, noté SO(n) ou encore SOn(R).

Remarque

• Rappelons que, par définition, pour tout f ∈ L (E) et toute base B de E :

det(f) = det (MatB(f)) = ±1

La dernière égalité est obtenue par le théorème précédent et le fait que
MatB(f) ∈ On(R).

• De la même manière que pour On(R), on peut mentionner que l’ensemble
des isométries vectorielle de déterminant 1 forme un sous-groupe de (E)
appelé groupe spécial orthogonal et noté SO(E). L’étude de ce groupe
n’est pas au programme. C’est une approche purement matricielle qui a
été préférée.
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III. Orientation d’un espace euclidien de dimension
2 ou 3

III.1. Relation d’orientation

III.1.a) Défintion

Définition

Soit E est un R-espace vectoriel de dimension finie.

Soient B1 et B2 deux bases de E.

• On dit que B1 a la même orientation que B2 si det(PB1,B2) > 0.

• Dans la suite, on note : B1 R B2 pour signifier que B1 et B2 ont même
orientation.

III.1.b) Classes d’équivalence de la relation d’orientation

Théorème 8.

Soit E un R-espace vectoriel de dimension finie.

• La relation binaire R est :

× réflexive,

× symétrique,

× transitive.

Une telle relation définit une relation d’équivalence.

• Il n’existe que deux orientations possibles. Ces deux orientations permettent
de définir deux ensembles distincts :

× l’ensemble des bases de E qui est « d’orientation 1 ».
Ces bases seront dites directes.

× l’ensemble des bases de E qui est « d’orientation 2 ».
Ces bases seront dites indirectes.

Ces deux ensembles définissent une partition de l’ensemble des bases de E.

• L’espace E est alors dit orienté.

Remarque
Nous avons déjà rencontré d’autres relations binaires qui sont des relations
d’équivalence :

× ∼
x→x0

est une relation d’équivalence sur les fonctions définies au voisinage

du point x0.

× ⇔ est une relation d’équivalence sur les propriétés mathématiques.

× la relation de similitude (celle qui relie deux matrices semblables) est une
relation d’équivalence sur les matrices.

Démonstration.

• Démontrons tout d’abord que R est une relation d’équivalence.

× La relation est réflexive : ∀B,B R B.
Soit B une base de E. Alors : PB,B = In et ainsi :

det(PB,B) = 1 > 0

× La relation est symétrique : ∀B1,∀B2, B1 R B2 ⇒ B2 R B1.
Soient B1 et B2 deux bases de E.
Supposons B1 R B2. Ainsi : det

(
PB1,B2

)
> 0.

Or PB2,B1 =
(
PB1,B2

)−1 et donc :

det
(
PB2,B1

)
= det

((
PB1,B2

)−1
)
=

1

det
(
PB1,B2

) > 0

× La relation est transitive : ∀(B1,B2,B3),
B1 R B2

B2 R B3

}
⇒ B1 R B3.

Soient B1, B2 et B3 des bases de E.
Supposons B1 R B2 et B2 R B3.
Ainsi : det

(
PB1,B2

)
> 0 et det

(
PB2,B3

)
> 0. Or :

PB1,B3 = PB1,B2 PB2,B3
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• Soient B1 = (e1, e2, . . . , en) est une base de E.
Notons B2 = (−e1, e2, . . . , en). Alors :

det
(
PB1,B2

)
= det (Diag(−1, 1 . . . , 1)) = −1 < 0

Ainsi, B1 et B2 ne sont pas dans la même classe d’équivalence. Démontrons
alors que toute autre base B est soit dans la classe d’équivalence de B1

(c’est-à-dire B RB1) ou dans celle de B2 (c’est-à-dire B RB2). En effet :

det
(
PB1,B

)
= det

(
PB1,B2 × PB2,B

)
= det

(
PB1,B2

)
× det

(
PB2,B

)
= −det

(
PB2,B

)
En particulier, si B1 est un base orthonormée directe et B2 une base
orthonormée indirecte, alors, pour toute base orthonormée B :
× si B est orthonormée directe alors det

(
PB1,B

)
= 1 et det

(
PB2,B

)
= −1.

× si B est orthonormée directe alors det
(
PB1,B

)
= −1 et det

(
PB2,B

)
= 1.

Remarque
• Orienter un espace, c’est choisir laquelle des deux orientations sera consi-

dérée comme directe (l’autre sera alors considérée comme indirecte).
• Dans E = Rn, on choisit arbitrairement de fixer comme orientation directe

(« orientation 1 ») l’orientation de la base canonique. On peut agir de même
pour tous les espaces vectoriels de référence. Les bases directes sont alors
celles qui ont la même orientation que les bases canoniques.

• Orienter une droite D c’est choisir un vecteur directeur v et fixer que la
base (v) de D sera directe. Dans ce cas, toute autre base de D, c’est à dire
toute famille (λ v) où λ ∈ R sera considérée comme :
× directe si λ > 0,
× indirecte si λ < 0.

• Dans un espace vectoriel orienté de dimension 3, orienter un plan P consiste
à choisir un vecteur n non inclus dans P , puis à appeler :
× bases directes de P les bases (u, v) de P telles que (u, v, n) soit une base

directe de E.
× bases indirectes de P les bases (u, v) de P telles que (u, v, n) soit une

base directe de E.

III.2. Rappel sur la notion de déterminant

III.2.a) Déterminant d’une famille de vecteurs

Soit E un K-espace vectoriel de dimension finie n ∈ N∗.

Soit B0 = (e1, . . . , en) une base de E.

• On appelle forme n-linéaire sur E toute application f : En → K qui est
n-linéaire par rapport à chacune de ses n variables.

• L’ensemble des formes n-linéaires (sur E) alternées (ou de manière équi-
valente antisymétriques) est un espace vectoriel de dimension 1. Il existe
donc une forme linéaire non nulle f qui engendre cet ensemble (pour toute
autre forme n-linéaire alternée g, il existe λ ∈ R telle que g = λ f).

• On appelle alors déterminant dans la base B0 l’unique forme n-linéaire
alternée g sur E telle que : g(e1, . . . , en) = 1. On note alors g = detB0 .

• Deux formes n-linéaires alternées sont toujours colinéaires. Si B1 est une
base de E, detB1 est une forme n-linéaire alternée et il existe donc µ ∈ R
tel que :

detB0 = µ · detB1

et : detB0(B1) = µ× detB1(B1) = µ.

• Rappelons enfin que, si (u1, . . . , un) ∈ En alors :

detB0(u1, . . . , un) =
∑

σ∈Sn

ε(σ) aσ(1),1 × . . .× aσ(n),n = det(A)

où, pour tout j ∈ J1, nK, uj =
n∑

i=1
ai,j ei et :

A = (ai,j) 1 ⩽ i ⩽ n
1 ⩽ j ⩽ n

=
(
MatB0(u1) . . . MatB0(un)

)
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• En particulier, si B1 = (v1, . . . , vn) est une base de E, alors, d’après ce qui
précède, pour tout (u1, . . . , un) ∈ En :

detB0

(
(u1, . . . , un)

)
= detB0(B1)× detB1

(
u1, . . . , un

)
= det

(
MatB0(u1) . . . MatB0(un)

)
× detB1

(
u1, . . . , un

)
= det

(
PB0,B1

)
× detB1

(
u1, . . . , un

)
III.2.b) Conséquence : calcul du déterminant d’une famille de vec-

teurs dans une base orthonormée directe

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien orienté où E est de dimension n ∈ N∗.

Soit (u1, . . . , un) ∈ En.

Soit B0 une base orthonormée directe de E.

• Le calcul du déterminant de (u1, . . . , un) dans une base orthonormée directe
est indépendant de la base orthonormée directe choisie. En effet, si B1 est
une base orthonormée directe :

detB0

(
u1, . . . , un

)
= det

(
PB0,B1

)
× detB1

(
u1, . . . , un

)
= detB1

(
u1, . . . , un

)

III.3. Produit mixte

Définition

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien où E est de dimension n ∈ N∗.

Soit (u1, . . . , un) ∈ En.

On considère que l’espace E est orienté.
(le choix de l’orientation directe a été fait)

Soit B0 une base orthonormée directe de E.

• On appelle produit mixte de la famille (u1, . . . , un) et on note [u1, . . . , un],
le déterminant de la famille (u1, . . . , un) dans la base B0.

[u1, . . . , un] = detB0

(
(u1, . . . , un)

)
= det

(
MatB0(u1) . . . MatB0(un)

)
Remarque

• Le produit mixte d’une base orthonormale directe vaut 1.

• Dans le cas n = 2, le produit mixte [u, v] est l’aire algébrique du triangle
porté par u et v.

• Dans le cas n = 3, le produit mixte [u, v, w] est le volume algébrique du
parallélépipède porté par u, v et w.

Considérations géométriques
Soit E un espace vectoriel de dimension finie n ∈ N∗.

• Dans le cas n = 2
Soit (u, v) ∈ E × E

[u, v] =
aire algébrique du parallélogramme formé par les
vecteurs u et v
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Pour faire la démonstration :

× on suppose (u, v) libre (le cas (u, v) lié donne [u, v] = 0).

× on remarque que (u, v) 7→ [u, v] = detB0(u, v) est bilinéaire. En consé-
quence :

[u, v] = [u, v + α · u] (pour n’importe quel α)

= [u, pF (v)]
(en notant
F = (Vect (u))⊥)

= [u, h] (en notant h = pF (v))

= [∥u∥ u

∥u∥
, ∥h∥ h

∥h∥
]

= ∥u∥ ∥h∥
[
u

∥u∥
,
h

∥h∥

]
= ∥u∥ ∥h∥ detB0

(
u

∥u∥
,
h

∥h∥

)

= ∥u∥ ∥h∥ detB0(B1) detB1 (B1)
(en notant

B1 =

(
u

∥u∥
,
h

∥h∥

)
)

= ±∥u∥ ∥h∥

= ±∥u∥ ∥v∥ × sin (û, v)

En particulier :

1

2
| [u, v] | = aire du triangle formé par les vecteurs u et v

• Dans le cas n = 3
Soit (u, v, w) ∈ E × E × E

[u, v] =
volume algébrique du parallélépipède
formé par les vecteurs u, v et w

Pour faire la démonstration :

× on suppose (u, v, w) libre (le cas (u, v, w) lié donne [u, v, w] = 0).

× on remarque que (u, v, w) 7→ [u, v, w] = detB0(u, v, w) est 3-linéaire. En
conséquence :

[u, v, w] = [u, v + α · u,w] (pour n’importe quel α d’après le
caractère 3-linéaire et alterné)

= [u, pF (v), w] (en notant F = (Vect (u))⊥)

= [u, h, w] (en notant h = pF (v))

= [u, h, w + λ · u+ µ · h] (pour tout couple (λ, µ) d’après
le caractère 3-linéaire et alterné)

= [u, h, t]
(en notant t = pG(w)
où G = (Vect (u, h))⊥)

=

[
∥u∥ u

∥u∥
, ∥h∥ h

∥h∥
, ∥t∥ t

∥t∥

]
= ∥u∥ ∥h∥ ∥t∥

[
u

∥u∥
,
h

∥h∥
,
t

∥t∥

]
= ∥u∥ ∥h∥ ∥t∥ detB0

(
u

∥u∥
,
h

∥h∥
,
t

∥t∥

)
= ∥u∥ ∥h∥ ∥t∥ detB0(B1) detB1 (B1) (B1 =

(
u

∥u∥
,
h

∥h∥
,
t

∥t∥

)
)

= ±∥u∥ ∥h∥ ∥t∥

= ±∥u∥ ∥v∥ × sin (û, v)× ∥t∥

= ±∥u∥ ∥v∥ × sin (û, v)× ∥w∥ × cos
(
ŵ, t
)

= ⟨u ∧ v, w⟩ (où u ∧ v est défini plus loin)

11
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III.4. Produit vectoriel dans un espace euclidien de dimension 3

III.4.a) Définition

Définition

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien orienté où E est de dimension 3.

Soit (u, v) ∈ E2.

• Comme x 7→ [u, v, x] est une forme linéaire, il existe un unique vecteur
a ∈ E tel que :

∀x ∈ E, [u, v, x] = ⟨a, x⟩

Ce vecteur est noté u ∧ v et s’appelle le produit le produit vectoriel de
u et v.

Remarque

• De manière équivalente, pour tout (u, v) ∈ E × E, on peut définir u ∧ v
par :

× si u et v sont colinéaires alors u ∧ v = 0.

× si u et v ne sont pas colinéaires :

▶ u ∧ v orthogonal à u et u ∧ v orthogonal à v

▶
(
u, v, u ∧ v

)
est une base directe

▶ ∥u ∧ v ∥ = ∥u ∥ ∥ v ∥ × sin (û, v)

• Si (e1, e2, e3) est une base orthonormée directe alors :

e1 ∧ e2 = e3 e2 ∧ e3 = e1 e3 ∧ e1 = e2

III.4.b) Propriétés du produit vectoriel

Théorème 9. (propriétés du produit vectoriel)

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien orienté où E est de dimension 3.

1. ∀(u, v, x) ∈ E3, [u, v, x] = ⟨u ∧ v, x⟩

2. ∀(u, v) ∈ E2, u ∧ v = −v ∧ u

3. ∀(u, v) ∈ E2, u ∧ v = 0 ⇔ Les vecteurs u et v sont colinéaires

4. L’application E × E → u ∧ v
(u , v) 7→ E

est bilinéaire et alternée.

(ou de manière équivalente : bilinéaire et antisymétrique)

5. ∀(u, v) ∈ E2, Le vecteur u ∧ v est orthogonal à u et à v

En particulier, si la famille (u, v) est libre :
(
Vect (u, v)

)⊥
= Vect (u ∧ w).

6. ∀(u, v) ∈ E2, La famille (u, v) est libre ⇒ La famille (u, v, u ∧ v)
est une base directe de E

En particulier, si u ̸= 0E et v ̸= 0E sont orthogonaux alors
(

u

∥u∥
,
v

∥v∥
,
u ∧ v
∥u ∧ v∥

)
est une base orthonormée directe de E.

7. Soit B0 une base orthonormée directe de E. Soit (u, v) ∈ E2. On note :

× (u1, u2, u3) les coordonnées de u dans B0.

× (v1, v2, v3) les coordonnées de v dans B0.

u ∧ v est de coordonnées
(
u2 v3 − u3 v2,−

(
u1 v3 − u3 v1

)
, u1 v2 − u2 v1

)
dans la base B0

Cas particulier de l’espace vectoriel E = M3,1(R)

u1u2
u3

 ∧

v1v2
v3

 =

 u2 v3 − u3 v2
−
(
u1 v3 − u3 v1

)
u1 v2 − u2 v1



8. ∀(u, v) ∈ E2, ∥u ∧ v ∥ = ∥u ∥ ∥ v ∥ × sin (û, v)

9. Identité de Lagrange : ∀(u, v) ∈ E2, ∥u ∧ v ∥2 + ⟨u, v⟩2 = ∥u ∥2 × ∥ v ∥2

12
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IV. Isométries vectorielles d’un plan euclidien

IV.1. Classification des matrices orthogonales en dimension 2

Théorème 10.
1. Soit A ∈M2(R).

A ∈ O2(R)

⇔ ∃θ ∈ R, A =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
OU A =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
Pour tout θ ∈ R, on note alors :

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
et S(θ) =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)

2. ∀θ ∈ R, det
(
R(θ)

)
= 1 et det

(
S(θ)

)
= −1

3. a) ∀ θ ∈ R, R(θ)−1 = t
(
R(θ)

)
= R(−θ)

b) ∀ θ ∈ R, S(θ)−1 = t
(
S(θ)

)
= S(θ)

4. a) ∀ (θ1, θ2) ∈ R2, R(θ1)×R(θ2) = R(θ1 + θ2)

(en particulier les matrices R(θ1) et R(θ2) commutent)

b) ∀ (θ1, θ2) ∈ R2, S(θ1)× S(θ2) = R(θ1 − θ2)

∀ (θ1, θ2) ∈ R2, R(θ1)× S(θ2) = S(θ1 + θ2)

∀ (θ2, θ3) ∈ R2, S(θ2)×R(θ3) = S(θ2 − θ3)

En particulier, pour tout (θ1, θ2, θ3) ∈ R3 :

R(θ1)× S(θ2)×R(θ3) = S(θ1 + θ2)×R(θ3) = S(θ1 + θ2 − θ3)

5. R(0) = I2 et : ∀(θ1, θ2) ∈ R2, R(θ1) = R(θ2) ⇔ θ1 − θ2 ≡ 0[2π]

6. • L’ensemble {R(θ) | θ ∈ R} est l’ensemble des matrices orthogonales
directes. Il est noté SO2(R) (on parle alors du groupe spécial orthogo-
nal), ou encore O+

2 (R). Les éléments de SO2(R) sont des matrices de
rotations (parmi elles I2 et −I2).

• Si A ∈ SO2(R), l’endomorphisme canoniquement associé à A, c’est-à-
dire l’application X 7→ AX est une rotation qui agit sur M2,1(R).

7. • L’ensemble {S(θ) | θ ∈ R} est l’ensemble des matrices orthogonales
indirectes. Il est parfois noté O−

2 (R).
• Si A ∈ O−

2 (R), l’endomorphisme canoniquement associé à A, c’est-à-
dire l’application X 7→ AX est une symétrie orthogonale qui agit sur
M2,1(R). Plus précisément, X 7→ AX est la symétrie orthogonale par
rapport à la droite F = Ker(A− I2) (constituée des vecteurs invariants
par l’endomorphisme canoniquement associé à A).

Démonstration.

1. Soit A ∈M2(R). Alors il existe (a, b, c, d) ∈ R4 tel que : A =

(
a b
c d

)
.

A ∈ O2(R) ⇔ MT M = I2

⇔


a2 + c2 = 1

b2 + d2 = 1

ab+ cd = 0

⇔ ∃
(
θ, α

)
∈ R2,


a = cos(θ), c = sin(θ)

b = cos(α), d = sin(α)

cos(θ) cos(α) + sin(θ) sin(α) = 0

⇔ ∃
(
θ, α

)
∈ R2,


a = cos(θ), c = sin(θ)

b = cos(α), d = sin(α)

cos(θ − α) = 0

⇔ ∃
(
θ, α

)
∈ R2,


a = cos(θ), c = sin(θ)

b = cos(α), d = sin(α)

α− θ ≡ π

2
[2π] OU α− θ ≡ −π

2
[2π]

13
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Or :
α− θ ≡ π

2
[2π] ⇔ ∃k ∈ Z, α =

π

2
+ θ
)
+ 2 kπ

Par ailleurs, pour tout θ ∈ R et tout k ∈ Z :
× b = cos

(
π
2 + θ + 2 kπ

)
= cos

(
π
2 + θ

)
= cos

(
π
2 − (−θ)

)
= sin(−θ)

× d = sin
(
π
2 + θ + 2 kπ

)
= sin

(
π
2 + θ

)
= sin

(
π
2 − (−θ)

)
= cos(−θ)

On agit de manière similaire pour le second cas. On obtient bien le résul-
tats souhaité.

2. Soit θ ∈ R.

det
(
R(θ)

)
=
(
cos(θ)

)2
+
(
sin(θ)

)2
= 1

det
(
S(θ)

)
= −

( (
cos(θ)

)2
+
(
sin(θ)

)2 )
= −1

3. Soit θ ∈ R.
a) Comme R(θ) ∈ O2(R) :

(
R(θ)

)T
=
(
R(θ)

)−1.

R(−θ) =
(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
=
(
R(θ)

)T
b) Comme S(θ) ∈ O2(R) :

(
S(θ)

)T
=
(
S(θ)

)−1.(
S(θ)

)T
=

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
= S(θ)

c) Évident.
4. Soit (θ1, θ2, θ3) ∈ R3.

a) R(θ1)×R(θ2)

=

(
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

)(
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

)

=

(
cos(θ1) cos(θ2)− sin(θ1) sin(θ2) −

(
cos(θ1) sin(θ2) + sin(θ1) cos(θ2)

)
sin(θ1) cos(θ2) + cos(θ1) sin(θ2) cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

)

=

(
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)
= R(θ1 + θ2)

b) S(θ1)× S(θ2)

=

(
cos(θ1) sin(θ1)
sin(θ1) − cos(θ1)

)(
cos(θ2) sin(θ2)
sin(θ2) − cos(θ2)

)

=

(
cos(θ1) cos(θ2) + sin(θ1) sin(θ2) −

(
sin(θ1) cos(θ2)− cos(θ1) sin(θ2)

)
sin(θ1) cos(θ2)− cos(θ1) sin(θ2) cos(θ1) cos(θ2) + sin(θ1) sin(θ2)

)

=

(
cos(θ1 − θ2) − sin(θ1 − θ2)
sin(θ1 − θ2) cos(θ1 − θ2)

)
= R(θ1 − θ2)

De la même manière :

R(θ1)× S(θ2)

=

(
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

)(
cos(θ2) sin(θ2)
sin(θ2) − cos(θ2)

)

=

(
cos(θ1) cos(θ2)− sin(θ1) sin(θ2) sin(θ1) cos(θ2)− cos(θ1) sin(θ2)

sin(θ1) cos(θ2) + cos(θ1) sin(θ2) −
(
cos(θ1) cos(θ2) + sin(θ1) sin(θ2)

))

=

(
cos(θ1 + θ2) sin(θ1 + θ2)
sin(θ1 + θ2) − cos(θ1 + θ2)

)
= S(θ1 + θ2)

Enfin :

R(θ1)× S(θ2)

=

(
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

)(
cos(θ2) sin(θ2)
sin(θ2) − cos(θ2)

)

=

(
cos(θ1) cos(θ2)− sin(θ1) sin(θ2) sin(θ1) cos(θ2)− cos(θ1) sin(θ2)

sin(θ1) cos(θ2) + cos(θ1) sin(θ2) −
(
cos(θ1) cos(θ2) + sin(θ1) sin(θ2)

))

=

(
cos(θ1 + θ2) sin(θ1 + θ2)
sin(θ1 + θ2) − cos(θ1 + θ2)

)
= S(θ1 + θ2)

5. Soit (θ1, θ2) ∈ R2. R(θ1) = R(θ2) ⇔ ei θ1 = ei θ2 ⇔ θ1 − θ2 ≡ 0[2π]

14



PSI

Aspects géométriques
• Pour bien comprendre la notion de matrice de rotation en dimension 2, un

peu de géométrie du plan s’impose. Rappelons qu’à tout point M(x, y) du
plan R2 est associé l’unique complexe z = x+ i y ∈ C (appelé affixe de M).
Le nombre complexe z peut être présenté sous sa forme trigonométrique :
il existe un unique couple (r, α) ∈ R+× ]− π, π[ tel que z = r ei α.

0

M
×

N
×

θ
α

α+ θ

Par la rotation d’angle θ, le point M est envoyé sur le point N d’affixe :

r ei (α+θ) = r ei α ei θ = z × ei θ

En terme d’action sur les affixes, la rotation d’angle de mesure θ peut être
vue comme la fonction :

z 7→ ei θ z

C → C
Déterminons maintenant la matrice représentation de la rotation d’angle
de mesure θ dans la base B =

(
(1, 0), (0, 1)

)
:

× (1, 0) est le point d’affixe 1 + 0 · i = 1 = ei 0.
Il est envoyé sur le point d’affixe ei θ × ei 0 = ei θ = cos(θ) + i sin(θ)

× (0, 1) est le point d’affixe 0 + 1 · i = i = ei
π
2 .

Il est envoyé sur le point d’affixe :

ei θ × ei
π
2 = ei (θ+

π
2
)

= cos(θ + π
2 ) + i sin(θ + π

2 )

= cos
(
π
2 − (−θ)

)
+ i sin

(
π
2 − (−θ)

)
= sin(−θ) + i cos(−θ)

Ainsi, le point (1, 0) est envoyé sur
(
cos(θ), sin(θ)

)
et le point (0, 1) est

envoyé sur
(
− sin(θ), cos(θ)

)
. On en déduit que la rotation d’angle de

mesure θ a pour matrice dans la base B :(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
• Soit A ∈ O2(R).

L’ensemble F = Ker(A− I2) est le sous-espace vectoriel des vecteurs inva-
riants par l’application fA : X 7→ AX. En effet :

F = Ker(A− I2)

= {X ∈M2,1(R) | AX = X}

= {X ∈M2,1(R) | fA(X) = X}
Trois cas se présentent alors :
× si dim(F ) = 2, alors F = M2,1(R) (inclusion et égalité des dimensions).

Ainsi : A = I2.
× si dim(F ) = 1, alors l’ensemble des vecteurs invariants par fA est une

droite vectorielle de M2,1(R). Dans ce cas, fA est une symétrie orthogo-
nale par rapport à F (axe de cette symétrie) et il existe θ ∈ R tel que
A = S(θ).

Déterminons Ker
(
S(θ)− I2

)
. Soit X =

(
x
y

)
∈M2,1(R).

X ∈ Ker
(
S(θ)− I2

)
⇔

(
S(θ)− I2

)
X = 0M2,1(R)

⇔

{ (
cos(θ)− 1

)
x + sin(θ) y = 0

sin(θ) x −
(
cos(θ) + 1

)
y = 0

⇔


2 sin

(
θ

2

)(
− sin

(
θ

2

)
x + cos

(
θ

2

)
y

)
= 0

−2 cos

(
θ

2

)(
− sin

(
θ

2

)
x + cos

(
θ

2

)
y

)
= 0

⇔ sin

(
θ

2

)
x− cos

(
θ

2

)
y = 0
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Finalement :

Ker
(
S(θ)− I2

)
=

X ∈M2,1(R) | ⟨X,


sin

(
θ

2

)
− cos

(
θ

2

)
⟩ = 0


=




sin

(
θ

2

)
− cos

(
θ

2

)



⊥

Ainsi, par inclusion et égalité des dimenstions :

Ker
(
S(θ)− I2

)
= Vect

((
cos
(
θ
2

)
sin
(
θ
2

))
)

× si dim(F ) = 0, alors seul 0M2,1(R) est invariant par fA.
Dans ce cas, fA est une rotation vectorielle de M2,1(R).

Remarque

• L’application

{
(R,+) → (O2(R),×)

θ 7→ R(θ)
est donc un morphisme de groupes.

• L’ensemble SO2(R) est un groupe commutatif.

• L’application

{
(R,+) →

(
SO2(R),×

)
θ 7→ R(θ)

est un morphisme surjectif de

noyau 2π Z.

IV.2. Conséquence : classification des isométries vectorielles
en dimension 2

Théorème 11.

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien orienté où E est de dimension 2.

Soit f ∈ O(E).

Deux cas se présentent.

1. Si det(f) = 1

• Dans ce cas, dans TOUTE base orthonormale directe B de E :

MatB(f) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
= R(θ)

où le réel θ, unique modulo 2π, ne dépend pas de la base orthonormale
directe choisie.

• L’application f est une rotation vectorielle.

• Le réel θ est appelé mesure de l’angle de la rotation f .

2. Si det(f) = −1
• Dans ce cas, il existe une base orthonormée B′ de E telle que :

MatB′(f) = S(0) =

(
1 0
0 −1

)
• L’application f est une symétrie orthogonale par rapport à une droite,

c’est-à-dire par rapport à un hyperplan de E.
On dit alors que f est une réflexion.
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Démonstration.

• Soit B une base orthonormée de E.

det(f) = det
(
MatB(f)

)
(par définition)

= ±1 (car MatB(f) ∈ O2(R)
d’après le Théorème 6)

Dans la suite, on note M = MatB(f).
• Deux cas se présentent alors.

× Si det(f) = 1 alors M ∈ O+
2 (R) (car M ∈ O2(R) et det(M) = 1).

D’après le Théorème 11, il existe θ ∈ R tel que : M = R(θ).
Il reste alors à démontrer que le réel θ, unique modulo 2π, ne dépend
pas de la base orthonormale choisie. Considérons alors B1 et B2 deux
bases orthonormales directes. Ces bases étant orthonormées, la première
partie de la démonstration permet de conclure qu’il existe (θ1, θ2) ∈ R2

tel que :
MatB1(f) = R(θ1) et MatB2(f) = R(θ2)

Par ailleurs :
▶ PB1,B2 ∈ O2(R) puisque B1 et B2 sont des bases orthonormales,

(en particulier : det
(
PB1,B2

)
= ±1)

▶ PB1,B2 ∈ O+
2 (R). En effet : det

(
PB1,B2

)
> 0 puisque B1 et B2 ont

même orientation.
Ainsi, il existe α ∈ R tel que : PB1,B2 = R(α).
Par formule de changement de base :

MatB1(f) = PB1,B2 ×MatB2(f)× PB2,B1

= R(α)×R(θ2)×R(−α)

= R
(
α+ θ2

)
×R(−α)

= R
(
α+ θ2 − α

)
= R(θ2)

Ainsi : R(θ1) = R(θ2) et donc θ1 − θ2 ≡ 0[2π].

× Si det(f) ̸= 1 alors det(f) = −1.
Alors M ∈ O−

2 (R) (car M ∈ O2(R) et det(M) = −1).
D’après le Théorème 11, il existe θ ∈ R tel que : M = S(θ).
Il reste alors à trouver une base orthonormée B′ telle que :

MatB′(f) =

(
1 0
0 −1

)
Notons alors B = (e1, e2) et définissons les vecteurs :

▶ e′1 = cos

(
θ

2

)
· e1 + sin

(
θ

2

)
· e2

▶ e′2 = − sin

(
θ

2

)
· e1 + cos

(
θ

2

)
· e2

MatB′(f) =

Alors B′ est une base orthonormée et PB,B′ = R
(
θ
2

)
.

Par formule de changement de base :

MatB′(f) = PB′,B ×MatB(f)× PB,B′

= R
(
− θ

2

)
× S(θ)×R

(
θ
2

)
= S

(
− θ

2 + θ
)
×R

(
θ
2

)
= S

(
− θ

2 + θ − θ
2

)
= S(0)
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Remarque
Soit E un espace euclidien de dimension 2.

1. L’inverse de la rotation d’angle θ est la rotation d’angle−θ, et la composée
des rotations d’angle θ et θ′ est la rotation d’angle θ + θ′.

2. La rotation d’angle 0 est idE , de matrice R(0) = I2, et la rotation d’angle
π est −idE , de matrice R(π) = −I2. Ce sont les deux seules (matrices de)
rotations diagonalisables (sur R), et les autres n’ont pas de valeur propre
réelle.

3. Si f est une rotation vectorielle d’angle de mesure θ alors, pour tout
vecteur unitaire u (c’est-à-dire tel que ∥u∥ = 1) :

× cos(θ) = ⟨u, f(u)⟩.
× sin(θ) = [u, f(u)].

Précisons ce dernier point.

u

v
f(u)

θ

π
2 − θ

Pour obtenir la mesure θ de l’angle de la rotation vectorielle f , on com-
plète la famille (u) en une BOND B = (u, v). Dans cette base :

u = 1 · u + 0 · v

f(u) = cos(θ) · u + sin(θ) · v

De sorte que :

[u, f(u)] = detB

(
u, f(u)

)
=

∣∣∣∣∣1 cos(θ)

0 sin(θ)

∣∣∣∣∣ = sin(θ)

4. Soient (u, v) ∈
(
E \ {0E}

)2, où E est un espace euclidien orienté de
dimension 2.
Alors il existe une unique rotation vectorielle r telle que :

r

(
u

∥u∥

)
=

v

∥v∥

On définit la mesure de l’angle (u, v) comme la mesure de l’angle de cette
rotation r. Cette mesure dépend du choix que l’on a fait pour l’orientation
du plan E et est notée mes(u, v).

u

v

u
∥u∥

v
∥v∥

θ

5. Par isomorphisme de représentation, on déduit du Théorème 10 4.b)
qu’une rotation peut s’écrire comme composée de deux réflexions (la pre-
mière pouvant être choisie arbitrairement). Plus précisément :
× soit s1 la réflexion par rapport à D1 = Vect (u1),
× soit s2 la réflexion par rapport à D2 = Vect (u2),
alors s2 ◦ s1 est la rotation d’angle 2mes(u1, u2).
On peut en conclure que O(E) est engendré par les réflexions (dans le cas
où E est de dimension 2).

x

u1

s1(x)

u2

s2
(
s1(x)

)
θ

θ
2
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V. Isométries vectorielles d’un espace euclidien de
dimension 3

V.1. Étude rapide de l’ensemble des vecteurs invariants d’une
isométrie vectorielle directe

Théorème 12.
A) Cas général

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

On note n = dim(E). On suppose n ∈ N∗.
Soit f ∈ O(E). Soit λ ∈ C.

λ ∈ Sp(f) ⇒
∣∣λ ∣∣ = 1

B) Cas de la dimension 3

Soit
(
E, ⟨·, ·⟩

)
un espace euclidien.

On suppose dim(E) = 3.
Soit f ∈ L (E).

0. L’endomorphisme f possède une valeur propre réelle.

1. f ∈ O(E) ⇒ SpR(f) ̸= ∅ ET SpR(f) ⊂ {−1, 1}

(si dim(E) = 3, toute isométrie vectorielle de E possède 1 et/ou −1
comme seules valeurs propres réelles)

2. f ∈ SO(E) ⇒ 1 ∈ Sp(f)

(si dim(E) = 3, toute isométrie vectorielle directe de E possède 1
comme seule valeur propre réelle)

Démonstration.
A) Supposons λ ∈ Sp(f).

Soit x un vecteur propre associé à la valeur propre λ. Alors :

∥f(x)∥ = ∥λ · x ∥ (car x ∈ Eλ(f))

=
∣∣λ ∣∣× ∥x∥

Or, comme f ∈ O(E) : ∥f(x)∥ = ∥x∥.

On en conclut : ∣∣λ ∣∣× ∥x∥ = ∥x∥
et, comme x ̸= 0E (puisque x est un vecteur propre) : |λ| = 1.

B) 0. Comme dim(E) = 3, alors χf est un polynôme unitaire de degré 3.
La fonction polynomiale est continue sur ]−∞,+∞[ et vérifie :

× χf (x) ∼
x→−∞

x3 −→
x→−∞

−∞.

× χf (x) ∼
x→+∞

x3 −→
x→+∞

+∞,

On en conclut, par théorème des valeurs intermédiaires, qu’il existe
λ0 ∈ ]−∞,+∞[ tel que : χf (λ0) = 0.
Ainsi, λ0 est un réel qui est valeur propre de f .

1. Supposons : f ∈ O(E). En reprenant les notations du point précédent,
f possède une valeur propre rélle λ0 qui vérifie :∣∣λ0 ∣∣ = 1

Ainsi : λ0 ∈ {−1, 1}.
2. Supposons : f ∈ SO(E).

Comme f ∈ O(E) alors f possède au moins une valeur propre réelle
et les seules valeurs propres réelles sont 1 et −1.
On procède par l’absurde.
On suppose que f ne possède pas la valeur propre 1.
Ainsi, la seule valeur propre réelle de f est −1.
Comme χf est de degré 3, deux cas se présentent.

▶ −1 est de multiplicité 3 c’est-à-dire : χf (X) =
(
X − (−1)

)3.
Alors : det(f) =

∏
λ∈Sp(f)

λmλ(f) = (−1)3 = −1 ̸= 1.

Absurde !

▶ −1 n’est pas de multiplicité 3
Remarquons tout d’abord que −1 ne peut pas être de multiplicité
2 sinon χf possèderait une autre valeur propre réelle ce qui est
exclut.
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Ainsi,−1 est de multiplicité 1 et comme c’est la seule racine réelle, il
existe α ∈ C\R racine complexe de χf . Comme χf est un polynôme
à coefficients réels, α est aussi racine de χf . Finalement :

χf (X) = (X − α)(X − α)
(
X − (−1)

)
et det(f) =

∏
λ∈Sp(f)

λmλ(f) = α× α× (−1) = −|α|2 ̸= 1. Absurde !

Remarque
• Lorsque l’espace vectoriel d’étude E est de dimension 3, toute isométrie

vectorielle directe possède 1 comme valeur propre. Ainsi, E1(f) = Ker(f−
idE) est un sous-espace propre de f . C’est l’ensemble des vecteurs de E
qui sont invariants par f . Son étude va permettre de caractériser SO(E).

V.2. Caractérisation des isométries vectorielles en dimension 3

Théorème 13.
Soit

(
E, ⟨·, ·⟩

)
un espace euclidien orienté.

On suppose que E est de dimension 3.
Soit f ∈ O(E).
Notons F = Ker(f − idE).

1) Si dim(F ) = 3 alors f = idE.

2) Si dim(F ) = 2 (hors-programme) alors f est la réflexion par rapport
au plan F . Dans ce cas, f est une isométrie vectorielle indirecte.

3) Si dim(F ) = 1 alors :

× le plan vectoriel P =
(
Ker(f − idE)

)⊥
est stable par f ,

× l’endomorphisme f P est une rotation de P différente de idP .
Dans ce cas, f est une isométrie vectorielle directe, appelée rotation d’axe
D = Ker(f − idE).

4) Si dim(F ) = 0 (hors-programme).

Étude du cas dim
(
Ker(f − idE)

)
= 1

On note D = Ker(f − idE).
Comme dim(D) = 1, la droite vectorielle D est dirigée par un vecteur a ̸= 0E.
On note P = D⊥.
On note alors θ la mesure de l’angle de la rotation f P .

Ainsi, f est la rotation d’axe D et d’angle de mesure θ.
La matrice de f dans toute base base orthonormée directe B′ de la forme

B′ =

(
a

∥a∥
, e2, e3

)
est :

MatB′(f) =

 1 0 0

0
0

R(θ)

 =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


Remarque

• Les matrices de SO3(R) sont exactement les représentations matricielles,
dans une base orthonormée, des rotations vectorielles.

• Notons E = R3. Soit f ∈ L (E) et A ∈ M3(R) sa matrice représentative
dans une base orthonormée B de E. Pour démontrer que f ∈ SO(E), on
étudie la matrice A et on démontre : A ∈ SO3(R). Plus précisément, on
démontre :
1) A ∈ O3(R). Il s’agit de démontrer que les colonnes de A forment une

base orthonormée de M3,1(R). On note C1, C2 et C3 les 3 colonnes de
A et on démontre :

∀(i, j) ∈ J1, 3K, ⟨Ci, Cj⟩ = δi,j

On peut aussi, de manière équivalente, démontrer : A× tA = I3.
2) A ∈ SO3(R). Pour ce faire on peut :

× soit démontrer det(A) = 1.
× soit démontrer : C3 = C1 ∧ C2.

En effet, comme ⟨C3, C1⟩ = 0 et ⟨C3, C2⟩ = 0 alors :

C3 ∈ (Vect (C1, C2))
⊥ = Vect (C1 ∧ C2)
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Comme ∥C3∥ = 1 alors C3 = ±C1 ∧ C2.

1 = det(A) = det
((
C1 C2 C3

))
= [C1, C2, C3] = ⟨C1∧C2, C3⟩M3,1(R)

Et ainsi : C1 ∧ C2 = C3.
3) Il reste alors à déterminer les éléments caractéristiques de f :

▶ l’axe de la rotation D = Ker(f − idE).
Cela correspond à déterminer le sous-espace propre E1(f). On met
donc en place la stratégie habituelle de détermination de sous-espace
propre. Ce sous-espace propre et de dimension 1 et s’écrit donc :
D = Ker(f − idE) = Vect (x). On note alors a =

x

∥x∥
.

On obtient ainsi un vecteur unitaire qui dirige et oriente D.
▶ la mesure θ de l’angle de rotation.

× le cosinus de l’angle θ est donné par :

tr(f) = tr
(
MatB(f)

)
= 1 + 2 cos(θ)

Ainsi : cos(θ) =
1

2

(
tr(f)− 1

)
et donc :

θ ≡ ± arccos

(
1

2

(
tr(f)− 1

))
[2π]

× il reste enfin à déterminer le signe de θ. Pour tout vecteur u unitaire
et orthogonal à a :

sin(θ) = [a, u, f(u)]

Pour s’en convaincre, on considère la famille B′ = (a, u, v) où
v = a ∧ u. Cette famille est une base orthonormée directe de E.

[
a, u, f(u)

]
= detB′

(
a, u, f(u)

)
=

∣∣∣∣∣∣
1 0 0
0 1 cos(θ)
0 0 sin(θ)

∣∣∣∣∣∣ = sin(θ)

(ou encore :
[
a, u, f(u)

]
= ⟨a ∧ u, f(u)⟩ = ⟨v, f(u)⟩

Exercice 1
Notons E = R3.
On note f l’endomorphisme de E dont la matrice dans la base canonique

B de E est A =
1

7

−2 6 3
6 3 −2
−3 2 −6

.

1. Démontrer que f est une rotation et en déterminer les caractéristiques
(angle et axe).

2. Même question avec A2 =
1

9

−7 4 4
4 8 −1
−4 1 −8

, puis A3 =
1

3

 2 1 2
−2 2 1
−1 −2 2


et enfin A4 =

1

2

 1 −
√
2 1√

2 0 −
√
2

1
√
2 1

.

Démonstration.
1. (i) Démontrons tout d’abord : A ∈ O3(R)

A×tA =
1

7

−2 6 3
6 3 −2
−3 2 −6

×1

7

−2 6 −3
6 3 2
3 −2 −6

 =
1

49

49 0 0
0 49 0
0 0 49

 = I3

(ii) Démontrons maintenant : A ∈ SO3(R)

C1 ∧C2 =
1

7

−26
−3

∧ 1

7

6
3
2

 =
1

7
× 1

7

 21
−14
−42

 =
1

7

 3
−2
−6

 = C3

Cela démontre :

det(A) = det
((
C1 C2 C3

))
= [C1, C2, C3]

= ⟨C1 ∧ C2, C3⟩M3,1(R)

= ⟨C3, C3⟩M3,1(R) = 1

Ainsi, A ∈ SO3(R). Cela démontre : f ∈ SO(E).

21



PSI

(iii) Déterminons alors l’axe de la rotation f
• Soit u ∈ R3. Il existe donc (x, y, z) ∈ R3 tel que u = (x, y, z).

Notons U = MatB0(u) =

xy
z

.

u ∈ E1(f) ⇐⇒ (f − idE)(u) = 0R3

⇐⇒ (A− I3) U = 0M3,1(R)

⇐⇒ 7 · (A− I3) U = 0M3,1(R)

⇐⇒

−9 6 3
6 −4 −2
−3 2 −13

 xy
z

 =

0
0
0



⇐⇒


−9x + 6 y + 3 z = 0
6x − 4 y − 2 z = 0
−3x + 2 y − 13 z = 0

. . . . . .

L1 ← L1 − L2

⇐⇒
{
−3x = −2 y

z = 0

On en déduit :
E1(f) =

{
(x, y, z) ∈ R3 | f(u) = u

}
=

{
(x, y, z) ∈ R3 | 3x = 2 y et z = 0

}
=

{(
2
3 y, y, 0

)
∈ R3 | y ∈ R

}
=

{
y ·
(
2
3 , 1, 0

)
∈ R3 | y ∈ R

}
= Vect

((
2
3 , 1, 0

))
= Vect ((2, 3, 0))

L’endomorphisme f est une rotation d’axe
D = Vect ((2, 3, 0)) que l’on oriente par le vecteur unitaire

a =
1√
13

(2, 3, 0).

(iv) Déterminons enfin la mesure θ de l’angle de la rotation f
• D’après le cours, dans toute base orthonormée directe B′ = (a, e2, e3) :

MatB′(f) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


On en conclut : tr(f) = tr

(
MatB(f)

)
= 1 + 2 cos(θ). Ainsi :

cos(θ) =
1

2

(
tr
(
MatB(f)

)
− 1
)

=
1

2

(
tr
(
A
)
− 1
)

=
1

7
(−2 + 3− 6)

Ainsi : θ ≡ ± arccos

(
−5
7

)
[2π].

(il reste alors à déterminer le sens de rotation c’est-à-dire de savoir

si la mesure de l’angle de rotation est θ ≡ arccos

(
−5
7

)
[2π] ou

θ ≡ − arccos

(
−5
7

)
[2π])

• Il reste à déterminer le signe de la mesure de l’angle de f .
Le vecteur u = (0, 0, 1) est orthogonal à a et unitaire.

sin(θ) =
[
a, u, f(u)

]
= detB

(
a, u, f(u)

)
=

∣∣∣∣∣∣∣∣
2√
13

0 3
7

3√
13

0 −2
7

0 1 −6
7

∣∣∣∣∣∣∣∣ =
1

7
√
13

∣∣∣∣∣∣∣∣
2 0 3

3 0 −2

0 1 −6

∣∣∣∣∣∣∣∣
En développant par rapport à la deuxième colonne, on obtient :

sin(θ) = − 1

7
√
13

(
2× (−2)− 3× 3

)
=

13

7
√
13

=

√
13

7
> 0

Finalement, l’endomorphisme f est la rotation vectorielle

d’axe D et d’angle de mesure arccos

(
−5

7

)
.
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