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o Les bases orthonormées sont des bases adaptées aux calculs. Si & =

CH XIII (1/2> : Endomorphismes d’un espace (e1,...,en) est une base orhtonormale alors :
euclidiens - Isométries vectorielles Ve € B, =3 (z,ex) - ex
k=1

« Rappelons enfin que si :

x (E, (-,-)) est un espace préhilbertien REEL (de dimension finie ou non).

Rappels
« Un espace euclidien est la donnée d'un couple (E, (, >) Si - x F un sous-espace vectoriel de F de dimension finie.
x E un espace vectoriel REEL. alors :
_ 1L
x F est de dimension finie. bE=ror
x (+,-) est un produit scalaire. En particulier, dans un espace euclidien, F et F- sont toujours des espaces
(un espace euclidien est un espace préhilbertien réel de dimension finie) supplémentaires dans F.
o Un espace euclidien (E, (-, )) est toujours muni d’une norme (dite eucli-
dienne) issue du produit scalaire. Plus précisément : I. Isométries vectorielles
-1 E = Rt I1.1. Définitions
v (@, ) Définition

Soit (F, (-, -)) un espace euclidien.
En particulier : | Vo € E, ||z|?® = (z,2) ( ( >) P

On note | - || la norme euclidienne sur E.
o Tout R-espace vectoriel E de dimension finie peut étre muni d’une structure Soit f € L(E)

euclidienne. Pour ce faire, il suffit de choisir une base % de E et de munir
E du produit scalaire : « On dit que 'endomorphisme f est une isométrie de E (ou un endomor-

phisme orthogonal de F), s'il conserve la norme, c’est-a-dire si :

() : ExXE - R

va € B, /()] = |l
(2,9) > !(Maty(x)) x Mats(y)

Autrement dit, un endomorphisme de E est une isométrie vectoriel s’il
On remarque au passage que A est une base orthonormée pour ( -,- ) 4. conserve la norme.

« Inversement, tout espace euclidien (E, (-,-)) admet une base orthonormée. « On note O(E) I'ensemble des isométries de E.
Pour obtenir une telle base, il suffit d’appliquer le procédé d’orthonorma-
lisation de Gram-Schmidt & n’importe quelle base 4 de E. Rappelons de
plus que si Z est une base orthonormale : (-,-) = (-, ) 5.
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Remarque

o On peut s’intéresser a I'étymologie du terme isométrie. Il est formé :

X

du préfixe iso (qui provient du grec ancien isos) qui signifie égal.

Ce préfixe se retrouve dans les termes : isocéle (du grec ancien isoskelés -
« aux jambes égales » ), isomorphe (isos et morphé - « forme » ), isobares
(lignes de méme pression atmosphérique), ...

du suffixe métrie (qui provient du grec ancien métron) qui signifie me-
sure.

Ce suffixe se retrouve notamment dans le terme goniométre (du grec
ancien gonia - « angle ») ou dans le terme trigonométrie (¢rigonos -
« triangulaire »).

o On peut citer des premiers exemples d’isométries vectorielles :

X

X

X

I’application idg est évidemment une isométrie vectorielle.

les projecteurs p qui ne coincident pas avec idg (c’est-a-dire les applica-
tions p € Z(E) telle que pop = p et Im(p) # E), ne sont JAMAIS des iso-
métries vectorielles. Tout simplement car pour tout élément = € Ker(p)
tel que x € Ker(p) :

lp(@)[| = 0£ll = 0 # [lz|

les symétries s (applications s € Z(E) telles que s o s = idg) ne sont
pas forcément des isométries vectorielles. Plus précisément, seules les
symétries orthogonales sont des isométries.

o La discussion sur les projecteurs permet de mettre en avant une propriété

important des isométries vectorielles :

ce sont forcément des endomor-

phismes f € Z(FE) injectifs. En effet, si ce n’est pas le cas (c’est-a-dire
si Ker(f) # {0g}) alors il existe x # Og tel que = € Ker(f). Ainsi :

[f @) =10zl = 0 # [lz|

L’espace vectoriel E étant de dimension finie, on en conclut que les isomé-
tries vectorielles sont des automorphismes.

I1.2. Caractérisation des isométries vectorielles

Théoréme 1.
Soit (E, (-, >) un espace euclidien.
On note || - || la norme euclidienne sur E.

Soit f € Z(E).

L’endomorphisme f est une iométrie vectorielle
& L’endomorphisme f conserve la norme
L’endomorphisme f conserve le produit scalaire, c’est-a-dire :
7 Way) € Ex B, (). ) = (#9)
- Limage par f d’une base orthonormée est une base
orthonormée
< f(Ao) = (f(el), e ,f(en)) est une base orthonormée de E
Démonstration.

1) C’est la définition.

2) (=) Supposons que f conserve la norme.
Rappelons les identités de polarisation :

(wy) € B2 (,y) = 5 (lz+yl? = 2l - lyl?)

== N =

(llz -+ 912 = llz = y1?)

Soit (x,y) € E x E. Alors :
@ fw) = 5 (1@ + @I = 1@ = 1£ @)
(17 + I = 17 @I = 1F @)

(z,y)

N = N = N

(e + 912 = N2l = I1y1?) =




PSI

(<) Supposons que f conserve le produit scalaire. Alors : I.3. L’ensemble O(F) est un sous-groupe de GL(F)

[f(@) = (f(z), f(z)) Théoréme 2.

Soit (E, (-,-)) un espace euclidien.
= Vi{zz) = |z

1) | O(FE) Cc GL(E)

3) (=) Supposons que f conserve la norme (et donc le produit scalaire
d’aprés le point précédent).
Soit & = (eq, ..., e,) une base orthonormeée.

2) La loi o est une loi de composition interne sur O(E).
Cette loi vérifie les propriétés suivantes :

2 o
Démontrons que %' = (f(e1), ..., f(en)) est une base orthonormée. a. ¥(f.g.h) € (O(E))", folgoh)=(fog)oh ?ast?ocmtw;t}e)
Soit (4,7) € [1,n]>. b, 31 O(E).YVf € O(E 1 1 _ existence d’un
o) € OWE),Vf € O(E), folow =lowof=1F  guont identite)
B est cet élément identité n’est autre que 1 =idg
(fle), fej)) = (eiej) = bi (car % est une . ( ! o) ) (g inverse de f
base orthonormée) c. VfeO(E),IgeO(FE), fog=gof=id . 17
noté g = f)
(<) Supposons que 'image d’une base orthonormée est une base ortho- Ces propriétés font de O(E) un groupe.
normeée.
L’ensemble O(FE) est alors nommé groupe orthogonal de E
Soit By = (e1,...,eyn) une base orthonormée de E.
Alors %, = (f(e1),..., f(en)) est aussi une base orthonormée de E. Remarque
Soit # € E. Notons (71, ...,Z,) les coordonnées de = dans la base o La notion de groupe n’est pas officiellement au programme de PSI. Le
o N ot terme ne sera pas utilisé (sauf s’il venait & étre rappelé) dans un écrit de
PB. Alors : x= > x;-e; et :
i=1 concours.
o a2 = i e 2 _ i 22 car B ost une BON « Le couple (GL(FE), o) est un groupe car la loi o vérifie les propriétés a., b.
= = 0 ' et c. citées ci-dessus.
) n 2 n o Un groupe est une structure algébrique au méme sens qu’un espace vecto-
X Hf(x)H =l 2w fle) || =2 3312 car % est une BON. 0 riel en est une. La démarche pour démontrer qu’un ensemble muni d’une
i=1 i=1

loi est un groupe est similaire & celle pour permettant de démontrer qu'un
ensemble est un espace vectoriel. Il y a essentiellement deux maniére de
procéder :

x s0it on vérifie tous les axiomes de défintion d’un groupe,

x soit on démontre que I’ensemble considéré est un sous-groupe d’un groupe
de référence. Pour démontrer que (F, T) est un sous-groupe de (E, T),
on démontre que F' est une partie non vide de E et que I’ensemble F' est
stable par la loi T. Il faut alors comprendre que le sous-groupe F' hérite
des propriétés a., b. et c¢. qui sont vérifiées par le sur-goupe FE.
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Démonstration. Démonstration.
(i) O(E) C GL(FE)
(it) O(E) # & car 1gp) = idp € O(E)
(i13) Démontrons que O(F) est stable par la loi o.
Soit (f,g) € O(E). Soit x € E.

I(Feog)@I = lf(g@)ll
= llg(@)] (car f € O(E))
= [l=I (car g € O(E))

0
I.4. Stabilité de I'orthogonal d’un sous-espace stable par iso-
métrie vectorielle

Théoréme 3.
0) Supposons : f € GL(E).

L’espace F est stable par f < L’espace F est stable par =1

1) Supposons : f € O(E).

V(z,y) € B% (f(x), f(y)) = (x,y)
& V(z,y) € B* (f(x),y) = (z, [ ()

2) Supposons : f € O(E).

L’espace F est stable par f < L’espace F- est stable par f

(rappelons : F est stable par f < Yu e F, f(u) € F)
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II. Matrices orthogonales Démonstration.

I1.1. Définition
Définition
Soit n € N*.
Soit A € 4, (R)
« On dit que la matrice A est orthogonale si tA x A = I,,.

« On note O,(R) (ou O(n)) 'ensemble des matrices orthogonales.

I1.2. Caractérisation des matrices orthogonales

Théoréme 4.
Soit n € N*.
Soit A € M,(R)

La matrice A est orthogonale
tAx A=1,
AxtA=1,
A est inversible et A7l =1A

Les colonnes de A constituent une base orthonormée de My 1(R)

t ¢ ¢ 02

Les lignes de A constituent une base orthonormée de M1 ,(R)
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I1.3. Lien entre matrices orthogonales et espaces euclidiens

I1.3.a) Les matrices orthogonales sont des matrices de changement
de base orthonormeée

Théoréme 5.
Soit (E, (-,-)) un espace euclidien.
Soit By une base orthonormée de E.
Soit A une base de E.

La base & est orthonormée < La matrice Py, % est orthogonale

Démonstration. OJ

I1.3.b) Les matrices orthogonales sont les représentations matri-
cielles, dans une base orthonormée, des isométries vecto-
rielles

Théoréme 6.

Soit (E, (-, >) un espace euclidien.
Soit B une base de E.
Soit f € L(F).

1) Sila base A est une base orthonormée de E alors :

f€O(E) & Maty(f) € O0n(E)

2) Sila base A est une base orthonormée de E, ’application linéaire :

Yo f
O(E)

= Matg(f)
— On(E)

est un tsomorphisme.

Démonstration. O
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I1.4. L’ensemble O,(R) est un sous-groupe de GL,(R)

Théoréme 7.
Soit n € N*,

1) | On(R) C GL.(R)

2) La loi x est une loi de composition interne sur O,(R).
Cette loi vérifie les propriétés suivantes :

a. Y(A,B,0) € (0,(R))* Ax (BxC)=(AxB)xC

(associativité)

b. lo,r) € O,(R),VA € O,(R), A x 1o,®r) = 1o, ®) X A=A
(existence d’un élément identité)
(cet élément identité n'est autre que 1o, (r)y = In)

c. VA€0O,(R),3iB€0,(R), AxB=BxA=1,
(B inverse de A, noté B = A"")

Ces propriétés font de O, (R) un groupe.

L’ensemble Op(R) est alors nommé groupe orthogonal.

3) | VA€ M,(R), AcO,(R) = (det(A))* =1

4) L’ensemble des matrices de O,(R) de déterminant 1 constitue aussi un
groupe appelé groupe spécial orthogonal, noté SO(n) ou encore SO, (R).

Remarque

« Rappelons que, par définition, pour tout f € Z(E) et toute base #Z de E :

det(f) = det (Matg(f)) = *1

La derniére égalité est obtenue par le théoréme précédent et le fait que

Mats(f) € On(R).

De la méme maniére que pour O, (R), on peut mentionner que ’ensemble
des isométries vectorielle de déterminant 1 forme un sous-groupe de (E)
appelé groupe spécial orthogonal et noté SO(FE). L’étude de ce groupe
n’est pas au programme. C’est une approche purement matricielle qui a
été preéférée.
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III. Orientation d’un espace euclidien de dimension
2o0u3l

III.1. Relation d’orientation
III.1.a) Défintion
Définition
Soit E est un R-espace vectoriel de dimension finie.
Soient % et $B9 deux bases de E.
« On dit que #; a la méme orientation que %, si det(Pg, 4,) > 0.

« Dans la suite, on note : #; R %y pour signifier que H; et HBs ont méme
orientation.

IT1.1.b) Classes d’équivalence de la relation d’orientation

Théoréme 8.
Soit E un R-espace vectoriel de dimension finie.
o La relation binaire R est :
x Téflexive,
x Symétrique,
x transitive.
Une telle relation définit une relation d’équivalence.

o Il n'existe que deux orientations possibles. Ces deux orientations permettent
de définir deux ensembles distincts :

x ’ensemble des bases de E qui est « d’orientation 1 ».
Ces bases seront dites directes.

x l’ensemble des bases de E qui est « d’orientation 2 ».
Ces bases seront dites indirectes.

Ces deux ensembles définissent une partition de [’ensemble des bases de E.

o L’espace E est alors dit orienté.

Remarque
Nous avons déja rencontré d’autres relations binaires qui sont des relations
d’équivalence :

X ~Y
T

du point xg.

est une relation d’équivalence sur les fonctions définies au voisinage

x <> est une relation d’équivalence sur les propriétés mathématiques.

x la relation de similitude (celle qui relie deux matrices semblables) est une
relation d’équivalence sur les matrices.

Démonstration.
o Démontrons tout d’abord que R est une relation d’équivalence.
x La relation est réflexive : V&, # R A.

Soit % une base de E. Alors : Py 5 = I, et ainsi :

det(ng@) =1>0

x La relation est symétrique : VB,,VHBy, B1 R By = By R A.
Soient %1 et $Bo deux bases de E.
Supposons %, R Ho. Ainsi : det (P%,%) > 0.

Or Py, 5 = (Pg,.,) ' et donc :
- 1
det (Regg,%l) = det ((R%,%g) 1) = m >0
K1, P2
x La relation est transitive : V(%, B, #3), gl g §2 } = %1 R Hs.
2 3

Soient %1, By et A3 des bases de E.
Supposons %1 R %o et By R As.
Ainsi : det (P@hggQ) > 0 et det (ng%@‘%) >0.0Or:

PQM@S = P——%’I:%Q P%Q,%’s
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o Soient %A = (e1,e€3,...,6e,) est une base de E. II1.2. Rappel sur la notion de déterminant

N =(— e . Alors :
otons #y = (=er €z, en). Alors I11.2.a) Déterminant d’une famille de vecteurs

det (P, ,) = det (Diag(—1,1...,1)) = =1 <0

Ainsi, % et A3 ne sont pas dans la méme classe d’équivalence. Démontrons
alors que toute autre base % est soit dans la classe d’équivalence de %,
(c’est-a-dire Z R %) ou dans celle de Ay (c’est-a-dire B R Hs). En effet :

det (PQLQ) = det (P@hggz X PQ%@)
= det (Ppgh,ggQ) x det (P%‘Q,%)
= — det (P@27gg)

En particulier, si #; est un base orthonormée directe et %y une base
orthonormée indirecte, alors, pour toute base orthonormée % :

x si A est orthonormée directe alors det (P«%ﬁ,%) = 1et det (P%% %) =—1.
x si A est orthonormée directe alors det (ngh g) = —1letdet (ng% 53) =0
Remarque

o Orienter un espace, c’est choisir laquelle des deux orientations sera consi-
dérée comme directe (I'autre sera alors considérée comme indirecte).

Dans E = R", on choisit arbitrairement de fixer comme orientation directe
(«orientation 1») l'orientation de la base canonique. On peut agir de méme
pour tous les espaces vectoriels de référence. Les bases directes sont alors
celles qui ont la méme orientation que les bases canoniques.

Orienter une droite D c’est choisir un vecteur directeur v et fixer que la

base (v) de D sera directe. Dans ce cas, toute autre base de D, c’est a dire

toute famille (Av) ot A € R sera considérée comme :

x directe si A > 0,

x indirecte si A < 0.

Dans un espace vectoriel orienté de dimension 3, orienter un plan P consiste

& choisir un vecteur n non inclus dans P, puis & appeler :

x bases directes de P les bases (u,v) de P telles que (u,v,n) soit une base
directe de F.

x bases indirectes de P les bases (u,v) de P telles que (u,v,n) soit une
base directe de E.

Soit F un K-espace vectoriel de dimension finie n € N*.

Soit %y = (eq,...,e,) une base de E.

On appelle forme n-linéaire sur E toute application f : E" — K qui est
n-linéaire par rapport a chacune de ses n variables.

L’ensemble des formes n-linéaires (sur F) alternées (ou de maniére équi-
valente antisymétriques) est un espace vectoriel de dimension 1. Il existe
donc une forme linéaire non nulle f qui engendre cet ensemble (pour toute
autre forme n-linéaire alternée g, il existe A € R telle que g = X f).

On appelle alors déterminant dans la base %, 'unique forme n-linéaire
alternée g sur E telle que : g(eq,...,e,) = 1. On note alors g = det 4,.

Deux formes n-linéaires alternées sont toujours colinéaires. Si % est une
base de E, det 4, est une forme n-linéaire alternée et il existe donc p € R
tel que :

det z, = p-det g

et : det g, (#1) = pxdety (%1) = p.

Rappelons enfin que, si (uq,...,u,) € E™ alors :

det g, (u, ... > €(0) agay X .-

oeGy

7“71) =
n

ot, pour tout j € [1,n], uj = > a;; e; et :
i=1

A= (a;;) l<i<n = (Matt%(ul) Matt%(un)>
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« En particulier, si #; = (v1, ..., v,) est une base de E, alors, d’aprés ce qui

précéde, pour tout (uq,...,u,) € E™:

det z, ((ul, . un))
= detgo(%l) xdetggl(ul,...,un)
= det (Matggo(ul) Matggo(un)> x det g, (ul, . ,un)
= det (P@(LQJ x det g, (ul, e ,un)

IT1.2.b) Conséquence : calcul du déterminant d’une famille de vec-

teurs dans une base orthonormeée directe

Soit (E (e >) un espace euclidien orienté ou E est de dimension n € N*.

Soit (u,...,u,) € E™.

Soit %y une base orthonormée directe de E.

o Le calcul du déterminant de (u1, ..., uy) dans une base orthonormée directe
est indépendant de la base orthonormée directe choisie. En effet, si % est

une base orthonormeée directe :
det 4z, (ul, . ,un) = det (ngm%) x det g, (ul, . ,un)

= det g, (ul,...,un)

II1.3. Produit mixte

Définition
Soit (E, (-,+)) un espace euclidien ot E est de dimension n € N*.
Soit (uq,...,u,) € E™.

On considére que 'espace E est orienté.
(le choix de l’orientation directe a été fait)

Soit Ay une base orthonormée directe de F.

« On appelle produit mixte de la famille (u1, ..., u,) et on note [uy, . ..

le déterminant de la famille (ug, ..., u,) dans la base %.
[ug,...,up] = detggo( (upy ... up) )

= det (Matggo(ul) Matggo(un))

Remarque

e Le produit mixte d’une base orthonormale directe vaut 1.

« Dans le cas n = 2, le produit mixte [u,v] est I'aire algébrique du triangle

porté par u et v.

« Dans le cas n = 3, le produit mixte [u,v,w] est le volume algébrique du

parallélépipéde porté par u, v et w.

Considérations géométriques
Soit F un espace vectoriel de dimension finie n € N*.

e Dansle casn =2

aire algébrique du parallélogramme formé par les

[u, ] = vecteurs u et v

10
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Pour faire la démonstration :

x on suppose (u,v) libre (le cas (u,v) lié donne [u,v] = 0).

x on remarque que (u,v) — [u,v] = det z,(u,v) est bilinéaire. En consé-

quence :

[u,v] = [u,v+ «a-ul

(pour n’importe quel o)
(en notant

= [wpe)] F = (Vect (u))*)

= [u,h] (en notant h = pp(v))
U h

= [llul HTH’HhH m]

=l I8l | |

lull” (12

U h
= Jull A dets ()
> Tl T8

= |[ull Al detz,(#1) detg, (%)

(en notant

%= ()

= Efu] [|7]

= Elull [Jo]] x sin (u,v)

En particulier :

[ u, 0] | =

DN | =

aire du triangle formé par les vecteurs u et v

e Dans le casn =3

Soit (u,v,w) € Ex Ex E

[u7 U} =

volume algébrique du parallélépipede
formé par les vecteurs u, v et w

Pour faire la démonstration :
x on suppose (u,v,w) libre (le cas (u,v,w) lié¢ donne [u, v, w] = 0).

x on remarque que (u, v, w) — [u, v, w] = det g, (u, v,w) est 3-linéaire. En
conséquence :

(pour n’importe quel o d’apres le
caractére 3-linéaire et alterné)
(en notant F' = (Vect (u))*)

[u,v + a - u, w
[u’pF(v)7 w]
[u, h, w] (en notant h = pp(v))

(pour tout couple (A, u) d’apres

[w, hyw + A uA - b le caractére 3-linéaire et alterné)

(en notant t = pg(w)
o G = (Vect (u, h))™")

U h t

el 2 0] e }
{ Fal 10 g 1
U h t
el 1] 1] []
Tl Tl T

U h t
lall 1] el dlets ()
o \Tall” AT T

U h t
lull |2l [|t]] detsm,(%1) detm, (B1) (%= <>)
’ ' [[wll ™ ([l 1[2]

[u, h,t]

| [IR]] 1]
Jul| [|v]| x sin (@0) x ||¢]
] Jjo] x sin (@) x [Je] x cos (w;)

(u A v,w) (ot u A\ v est défini plus loin)

11
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II1.4. Produit vectoriel dans un espace euclidien de dimension 3,

IT1.4.a) Définition

Définition 4
Soit (E, (-, >) un espace euclidien orienté ou E est de dimension 3.
Soit (u,v) € E2. 5.

o Comme z — [u,v,z| est une forme linéaire, il existe un unique vecteur
a € F tel que :
Ve € E, [u,v,z] = (a,x)

Ce vecteur est noté u A v et s’appelle le produit le produit vectoriel de 6.

u et v.

Remarque

o De maniére équivalente, pour tout (u,v) € E x E, on peut définir u A v
par : 7.

x sl u et v sont colinéaires alors u A v = 0.

x si u et v ne sont pas colinéaires :
» u A v orthogonal & u et u A v orthogonal & v
> (u, v, U AN v) est une base directe
» unv] = Jull v xsin(u,v)

o Si(e1,e2,e3) est une base orthonormée directe alors :

e1 Ney =e3 e2 Nes =eq esNep = e

IT1.4.b) Propriétés du produit vectoriel

Théoréme 9. (propriétés du produit vectoriel)
8.
Soit (E, (-,-)) un espace euclidien orienté ou E est de dimension 3.

1. | Y(u,v,z) € B3, [u,v,2] = (u A v,z) 9.

2. | V(u,v) € E* uAv

—v AU

Y(u,v) € B, u Av = 0 < Les vecteurs u et v sont colinéaires

x E — uAv
, v) — E
(ou de maniére équivalente : bilinéaire et antisymétrique)

L’application (u est bilinéaire et alternée.

Y(u,v) € E?, Le vecteur u A v est orthogonal ¢ u et a v

En particulier, si la famille (u,v) est libre : (Vect (u,v) )J' = Vect (u A w).

La famille (u,v,u A v)

2 . .
V(u,v) € E*, La famille (u,v) est libre ost une base directe de E

=

A
En particulier, siu # Og et v # 0 sont orthogonaux alors (u, L, unv )
[ull " loll™ [[u Aol

est une base orthonormée directe de E.

Soit By une base orthonormée directe de E. Soit (u,v) € E2. On note :
x (u1,ug,us) les coordonnées de u dans A.

x (v1,v2,v3) les coordonnées de v dans HAy.

u A\ v est de coordonnées (UQ V3 — U3 v, —(u1 V3 — us vl),ul V2 — U9 ’1}1)
dans la base By

Cas particulier de I’espace vectoriel £ = .#51(R)

Ul U1 U2 V3 — U3 v2
g A vl = [—(wvs—usvr )
us U3 Uy V2 — Uz V1

V(u,v) € B lunvl| = [[ul |[v] x sin (@70)

Identité de Lagrange : | Y(u,v) € E?, ||luAv|*+ (u,0)? = [Ju|?® x ||v]?

12
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IV. Isométries vectorielles d’un plan euclidien

IV.1. Classification des matrices orthogonales en dimension 2

Théoréme 10.
1. Soit A € %Q(R)

A € 02(R)

_ (cos(f) —sin(6) _ (cos(f) sin(6)
& FER, A= (sin(&) cos(6) > 0 A= <Sin(6) —cos(f)

)

Pour tout § € R, on note alors :

R0 = (5nle) i) @ s0= (i) il

2. VO eR,| det (R(#)) =1 |et| det(S(F)) =-1
3. a) VOER,| RO ="(R(0)) = R(-0)
b) VOER, | S(O)t="(S(0)) = S(9)

4. a) V(01,92) € Rz, R(Gl) X R(eg) = R(91 + 92)

(en particulier les matrices R(01) et R(02) commutent)

b) V(@l,eg) € Rz, 5(91) X S(@Q) = R(91 — 92)

V(el,ez) - RQ, R(91) X 5(92) = 5(91 + 92)

V(02,05) € R?,| S5(02) x R(03) = S(62 — 03)

En particulier, pour tout (61, 602,03) € R3 :
R(Ql) X 5(92) X R(@g) = 5(91 + (92) X R(@g) = 5(91 + 6 — 93)

5. R(0)=1Iy et :| Y(01,02) €R?, R(A)) = R(62) < 61 — 6, =0[27]

L’ensemble {R(0) | 6 € R} est l’ensemble des matrices orthogonales
directes. Il est noté SO2(R) (on parle alors du groupe spécial orthogo-
nal), ou encore Oy (R). Les éléments de SO2(R) sont des matrices de
rotations (parmi elles Iy et —Is).

Si A € SO2(R), ’endomorphisme canoniquement associé a A, c’est-a-
dire Uapplication X — AX est une rotation qui agit sur #21(R).

L’ensemble {S(0) | 0 € R} est l’ensemble des matrices orthogonales
indirectes. Il est parfois noté O5 (R).

Si A € 05 (R), endomorphisme canoniquement associé a A, c’est-a-
dire Uapplication X — AX est une symétrie orthogonale qui agit sur
A1 (R). Plus précisément, X — AX est la symétrie orthogonale par
rapport a la droite F = Ker(A — I) (constituée des vecteurs invariants
par l’endomorphisme canoniquement associé a A).

Démonstration.
1. Soit A € .#>(R). Alors il existe (a,b,c,d) € R* tel que : A = (a b),

c d
AeO0R) & M"™M =1,

a4+ =1
& P+ d? =1
ab+cd = 0

a = cos(f), ¢ =sin(f)
& 3(6,a) € R?%, S b= cos(a), d=sin(a)

cos(#) cos(a) + sin(f) sin(a) = 0

a = cos(f), ¢ = sin(0)

& 3(6,a) €R?, S b=cos(a), d=sin(a)

& 3(0,a) eR?, { b=cos(a), d=sin(a)
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Or :
a—9:§ 2r] & ke, a:g—l—ﬁ)—l—le

Par ailleurs, pour tout 8 € R et tout k € Z :

x b:cos(g+9—|—2k7r):cos(%+9):cos(g—

x d:sin(g+0+2k7r):sin(%+9):sin(g—

(—0)) = sin(—0)
(=6)) = cos(—0)

On agit de maniére similaire pour le second cas. On obtient bien le résul-

tats souhaité.

2. Soit 0 € R.
det (R(9)) = (cos(@))2 + (sin(@))2 =1
det (S(9)) = —( (cos(@))2 + (Sin(@))2 ) = —
3. Soit 6 € R.
a) Comme R(#) € O2(R) : (R(0) ) = (9))_1.
_ (cos(—0) —sin(—0) cos(f)  sin(f T
R(-0) = <sm( 0)  cos(—6) > (— sin(6) cos(d ) (R(B))
b) Comme S(0) € Oz(R (S(G) = (5(9))" '
v (cos(d) sin(0)
(56))" = (5111(9) —cos(9)> 5(9)
¢) Evident.
4. Soit (91, 02, 03) € R3.
a) R(Ql) X R(Qz)
cos(f1) —sin(61)Y [cos(f2) —sin(fs)
(sin(&l) cos(f1) )(sin(ag) cos(f2) )

—(cos(@l) sin(f2) + sin(61) 005(92))

(cos(@l) cos(fz) — sin(61) sin(f2)
cos(f1) cos(f2) — sin(f;) sin(62)

sin(f1) cos(62) + cos(#;) sin(62)

cos(f1 + 63) —sin(6y + 69)
sin(f1 + 62)  cos(0; + 62)

R(91 + (92)

)

b) S5(61) x 5(62)
_ (cos(0y) sin(6y) cos(f2)  sin(fq)
o (sm( 0) — cos(@l)) (sin(Gg) cos(92)>
_ cos(61) cos(2) + sin(6y) sin(f2) —( sin(6;) cos(f2) — cos(6;) sin(6s) ))
sin(f) cos(f2) — cos(61) sin(6s) cos(61) cos(02) + sin(f;) sin(f2)
(005(91 fs) —sin(6; — 92))
sin(f; — 63)  cos(61 — 02)
= R(0; — 69)
De la méme manieére :
R(Gl) X 5(92)
_ [cos(01) —sin(f1)) [cos(f2)  sin(fq)
o (sm( cos(61) > (sin(ﬁg) 005(62))

cos(f2) — sin(6y) sin(62)

01)
(cos(@l) sin(61) cos(62) — cos(fy) sin(6fz)
sin(6) cos(f2) + cos(#) sin(62)

)

( —(cos(6y) cos(62) + sin(6;) sin(6s))
(005(91 +63) sin(6y + 02) >
sin(6y + 62) —cos(0; + 62)
= 5(91 + 92)
Enfin :
R(01) x 5(62)
_ [cos(01) —sin(6;1)) (cos(f2)  sin(f2)
o (sm( 61) cos(6y) ) (sin(eg) - cos(92)>
_ (cos(&l) cos(f2) — sin(61) sin(fs) sin(f1) cos(2) — cos(f;) sin(62) >
sin(6y) cos(f2) + cos(6) sin(f2) —(cos(61) cos(f2) + sin(f;) sin(fz))
_ (cos(91 +0)  sin(61 + 09) )
sin(fy + 62) —cos(01 + 62)
= S(01 + 69)

5. Soit (91,92) € R2. R((gl) = R(QQ) & ol =itz o 01 — 0y = 0[27T] OJ

14
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Aspects géométriques

o Pour bien comprendre la notion de matrice de rotation en dimension 2, un
peu de géométrie du plan s’impose. Rappelons qu’a tout point M (x,y) du
plan R? est associé I'unique complexe z = z+1iy € C (appelé affixe de M).
Le nombre complexe z peut étre présenté sous sa forme trigonométrique :
il existe un unique couple (r, o) € Ry x | — 7, 7| tel que z = re’®.

N
a+0

Par la rotation d’angle 6, le point M est envoyé sur le point N d’affixe :

i (a+6) i0 i0

r el =re®e’=zxe

En terme d’action sur les affixes, la rotation d’angle de mesure 6 peut étre

vue comme la fonction :

z = ewz

C —- C

Déterminons maintenant la matrice représentation de la rotation d’angle

de mesure 6 dans la base & = ((1, 0), (0, 1)) :
x (1,0) est le point d’affixe 1 +0-i =1 = e'".

Il est envoyé sur le point d’affixe e/ x /0 = ¢?? = cos(6) + i sin(#)
x (0,1) est le point d’affixe 0+1-i =14 =¢€'2.

Il est envoyé sur le point d’affixe :

ol oi3 = i(0+F)

= cos(0+ §) +isin(0 + 3)
= cos (5 — (=) +isin(F —(-9))
= sin(—0) + i cos(—0)

Ainsi, le point (1,0) est envoyé sur (cos(f),sin(d)) et le point (0,1) est
envoyé sur ( — sin(6),cos(d)). On en déduit que la rotation d’angle de
mesure 0 a pour matrice dans la base % :

<cos(9) - sin(9)>
sin(f)  cos(f)
Soit A € Oz(R).

L’ensemble F' = Ker(A — I5) est le sous-espace vectoriel des vecteurs inva-
riants par I'application f4 : X — AX. En effet :

F = Ker(A-1I)
= {X e 1(R) | AX =X}
= {X e #:(R) ] fa(X) = X}
Trois cas se présentent alors :

droite vectorielle de .#5 1 (R). Dans ce cas, fa est une symétrie orthogo-
nale par rapport a F' (axe de cette symétrie) et il existe 6 € R tel que

A=5(0).
Déterminons Ker (S(6) — I3). Soit X = <§) € M1 (R).
X eKer (S(0)— L) < (S(0)— 1) X =04, ®

{ (cos(0) —1) z + sinf)y = 0
sin() z — (cos(@)+1)y = 0
y) =0

2o (5) (-sn (3) =+ o(3)
(D) (can(2) 2+ (D)) - o
o an(2) s (2) -

15
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Finalement : IV.2. Conséquence : classification des isométries vectorielles
en dimension 2
o <2> Théoréme 11
Ker (S(0) — L) = { X €., (R)| (X, ) =0 coreme ==
_ cos <9> Soit (E, (-,-)) un espace euclidien orienté ot E est de dimension 2.
\ N 2 Soit f € O(E).
sin <2> Deux cas se présentent.
N 0 1. Sidet(f) =1
o8 <2> e Dans ce cas, dans TOUTE base orthonormale directe 4 de E :
Ainsi, par inclusion et égalité des dimenstions : cos(f) —sin(h)
Mat(f) = <sin(0) cos(6) > = R(0)
0
cos (2
Ker (5(9) - IQ) = Vect ((sin 0 )) ot le réel 0, unique modulo 2w, ne dépend pas de la base orthonormale
2 directe choisie.
x si dim(F) = 0, alors seul 0,4, , () est invariant par fa. o L’application f est une rotation vectorielle.
Dans ce cas, fa est une rotation vectorielle de .#31(R). o Le réel 0 est appelé mesure de ’angle de la rotation f.
Remarque 2. ‘SYL g?tl(f) = :]L
o (R,+) — (Oa(R), x) . o Dans ce cas, il existe une base orthonormée B’ de E telle que :
« L’application 0 R(B est donc un morphisme de groupes. Lo
= R() Mat . (f) = S(0) = <0 1)
« L’ensemble SO2(R) est un groupe commutatif.
) D (R, +) — (SOQ(R)7 ><) . L o L’application f est une symétrie orthogonale par rapport a une droite,
« L’application est un morphisme surjectif de s .
0 —  R(0) c’est-a-dire par rapport a un hyperplan de E.
noyau 27 Z. On dit alors que f est une réflexion.

16
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Démonstration.

e Soit Z une base orthonormée de FE.

det(f) = det (Mat,@(f)) (par définition)

(car Matz(f) € O2(R)

= *l d’apres le Théoréeme 6)

Dans la suite, on note M = Mat»(f).
« Deux cas se présentent alors.
x Sidet(f) =1 alors M € OF (R) (car M € O2(R) et det(M) = 1).

D’aprés le Théoréme 11, il existe # € R tel que : M = R(6).
Il reste alors a démontrer que le réel 8, unique modulo 27, ne dépend
pas de la base orthonormale choisie. Considérons alors %; et %o deux
bases orthonormales directes. Ces bases étant orthonormées, la premiére
partie de la démonstration permet de conclure qu'il existe (61,6;) € R?
tel que :
Mat%(f) = R(@l) et Matg, (f) = R(Qg)

Par ailleurs :
» Py 2, € O2(R) puisque % et X, sont des bases orthonormales,

(en particulier : det (Pg, z,) = £1)

» Py, 2, € 05 (R). En effet : det (P@l’ggz) > 0 puisque %, et Py ont
méme orientation.

Ainsi, il existe o € R tel que : Py, 2, = R().
Par formule de changement de base :
Matg, (f) = Pag,2, X Matg,(f) x Pz, 2,
= R(a) x R(62) x R(—a)
= R(a+6) x R(—a)
= R(a + 05 — Oé)
= R(62)

Ainsi : R(61) = R(02) et donc 0; — 03 = 0[27].

x Si det(f) # 1 alors det(f) = —1.

Alors M € O5 (R) (car M € Oz(R) et det(M) = —1).

D’aprés le Théoréme 11, il existe 6 € R tel que : M = S(0).

Il reste alors a trouver une base orthonormée %’ telle que :

Matg (f) = (é _01>

Notons alors & = (e1, e2) et définissons les vecteurs :

) 0 (0
» €] = COoS <2) -e1 +sin <2> - e
/ . 0 0
> €y = —sin <2> - e1 + cos (2> - €9

Matg (f) =

Alors %' est une base orthonormée et Py 4 = R (g)
Par formule de changement de base :

Matg (f) = Pg g x Matg(f) X Pga
= R(-5)xS(0) xR (5)
=S40 <)

- s(40-9
= 5(0)

17
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Remarque
Soit E un espace euclidien de dimension 2.

1.

L’inverse de la rotation d’angle 0 est la rotation d’angle —0, et la composée
des rotations d’angle 6 et 6’ est la rotation d’angle 6 + 6'.

La rotation d’angle 0 est idg, de matrice R(0) = I2, et la rotation d’angle
7 est —idg, de matrice R(mw) = —I5. Ce sont les deux seules (matrices de)
rotations diagonalisables (sur R), et les autres n’ont pas de valeur propre
réelle.

Si f est une rotation vectorielle d’angle de mesure 6 alors, pour tout
vecteur unitaire u (c’est-a-dire tel que ||u|| = 1) :

x cos(0) = (u, f(u)).
x sin(0) = [u, f(u)].

Précisons ce dernier point.

Pour obtenir la mesure 6 de ’angle de la rotation vectorielle f, on com-
pléte la famille (u) en une BOND Z = (u,v). Dans cette base :

u = 1 u + 0 - w

f(u) = cos(9) u + sin(@) - v

De sorte que :

1 cos(6)

o)) = det g f() = |

= sin(6)

. Soient (u,v) € (E\ {OE})Q, ot E est un espace euclidien orienté de

dimension 2.
Alors il existe une unique rotation vectorielle r telle que :

(51) =

On définit la mesure de 'angle (u,v) comme la mesure de ’angle de cette
rotation r. Cette mesure dépend du choix que 'on a fait pour 'orientation
du plan E et est notée mes(u,v).

£

. Par isomorphisme de représentation, on déduit du Théoréme 10 4.b)

qu’une rotation peut s’écrire comme composée de deux réflexions (la pre-
miére pouvant étre choisie arbitrairement). Plus précisément :

x soit s1 la réflexion par rapport & Dy = Vect (uq),
x soit so la réflexion par rapport & Dy = Vect (ug),

alors sy 0 s1 est la rotation d’angle 2 mes(ug, usg).
On peut en conclure que O(F) est engendré par les réflexions (dans le cas
ou E est de dimension 2).

Us Uy

»n
[N}
—
»
fiary
8
N—r
SN—
\
\
T
\
[NISSN
\
\
z
.
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V. Isométries vectorielles d’un espace euclidien de
dimension 3

V.1. Etude rapide de I’ensemble des vecteurs invariants d’une
isométrie vectorielle directe

Théoréme 12.

A) Cas général

On note n = dim(FE). On suppose n € N*.
Soit f € O(E). Soit A € C.

AeSp(f) = ‘)\‘:1

B) Cas de la dimension 3

On suppose dim(E) = 3.
Soit f € L(F).
0. L’endomorphisme f posséde une valeur propre réelle.

1.| feO(E) = Spr(f)#2 ET Spr(f) C {-1,1}

(si dim(E) = 3, toute isométrie vectorielle de E posseéde 1 et/ou —1
comme seules valeurs propres réelles)

= 1€ Sp(f)

2.| feSO(E)

(si dim(E) = 3, toute isométrie vectorielle directe de E posséde 1
comme seule valeur propre réelle)

Démonstration.

A) Supposons A € Sp(f).
Soit & un vecteur propre associé & la valeur propre A. Alors :

If@I = Azl  (carxz e Ex(f))
= | A x[|z]
Or, comme f € O(E) : || f(z)| = [|z]-

On en conclut :
| A ] [l = ]
et, comme = # O (puisque x est un vecteur propre) : || = 1.

B) 0. Comme dim(FE) = 3, alors x ¢ est un polynéme unitaire de degré 3.
La fonction polynomiale est continue sur | — oo, +-00[ et vérifie :

< xf(x) ~ ¥ — +oo,

z—+o00 T—>+00
On en conclut, par théoréme des valeurs intermédiaires, qu’il existe
Ao € ] — 00, +00 tel que : x¢(Aog) = 0.
Ainsi, Ay est un réel qui est valeur propre de f.

1. Supposons : f € O(FE). En reprenant les notations du point précédent,
f posséde une valeur propre rélle \p qui vérifie :

[ Ao|=1

Ainsi : \g € {—1,1}.
2. Supposons : f € SO(E).

Comme f € O(F) alors f posséde au moins une valeur propre réelle
et les seules valeurs propres réelles sont 1 et —1.

On procéde par I'absurde.

On suppose que f ne posséde pas la valeur propre 1.
Ainsi, la seule valeur propre réelle de f est —1.
Comme ¢ est de degré 3, deux cas se présentent.

» —1 est de multiplicité 3 c’est-a-dire : xf(X) = (X — (—1))3.

Alors : det(f) = [] M) = (—1)P = —1 £1.
AeSp(f)

Absurde!

> —1 n'est pas de multiplicité 3
Remarquons tout d’abord que —1 ne peut pas étre de multiplicité
2 sinon X posséderait une autre valeur propre réelle ce qui est

exclut.
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Ainsi, —1 est de multiplicité 1 et comme c’est la seule racine réelle, il
existe a € C\R racine complexe de x s. Comme X s est un polynéme
a coefficients réels, @ est aussi racine de xy. Finalement :

X (X) = (X —a)(X —@)(X — (-1))
et det(f)= J] I =axax(-1)=—|a*># 1. Absurde!
AESP(f) s
Remarque

o Lorsque 'espace vectoriel d’étude E est de dimension 3, toute isométrie
vectorielle directe posséde 1 comme valeur propre. Ainsi, Ey(f) = Ker(f—
idg) est un sous-espace propre de f. C’est I'ensemble des vecteurs de E
qui sont invariants par f. Son étude va permettre de caractériser SO(FE).

V.2. Caractérisation des isométries vectorielles en dimension 3
Théoréme 13.

Soit (E, (-,-)) un espace euclidien orienté.

On suppose que E est de dimension 3.

Soit f € O(E).

Notons F = Ker(f —idg).
1) ’S@' dim(F) = 3‘ alors f =idg.

2) ’ Si dim(F) = 2‘ (hors-programme) alors f est la réflexion par rapport

au plan F. Dans ce cas, f est une isométrie vectorielle indirecte.

3) | Si dim(F) = 1| alors :

1
x le plan vectoriel P = (Ker(f — idE)) est stable par f,

x endomorphisme f||p est une rotation de P différente de idp.

Dans ce cas, f est une isométrie vectorielle directe, appelée rotation d’axe
D = Ker(f —idg).

4) ’ Si dim(F) = O‘ (hors-programme ).

Etude du cas dim (Ker(f - idE)> =1
On note D = Ker(f —idg).

Comme dim(D) = 1, la droite vectorielle D est dirigée par un vecteur a # Op.
On note P = D™+,
On note alors 6 la mesure de l’angle de la rotation f||p.

Ainsi, [ est la rotation d’axe D et d’angle de mesure 6.

La matrice de f dans toute base base orthonormée directe %' de la forme

a
B = <HaH,eg,63> est :

110 0 1 0 0
= 0 = |0 cos(f) —sin(h)
R(9) (O sin(f)  cos(6) )

Mat g (f)

Remarque

« Les matrices de SO3(R) sont exactement les représentations matricielles,
dans une base orthonormée, des rotations vectorielles.

« Notons E = R3. Soit f € Z(F) et A € .#3(R) sa matrice représentative
dans une base orthonormée # de E. Pour démontrer que f € SO(E), on
étudie la matrice A et on démontre : A € SO3(R). Plus précisément, on
démontre :

1) A € O3(R). 1l s’agit de démontrer que les colonnes de A forment une
base orthonormée de .5 1(R). On note C1, Cy et C3 les 3 colonnes de
A et on démontre :

V(Z,j) € [[173ﬂ7 <CZ7CJ> = 5%,]

On peut aussi, de maniére équivalente, démontrer : A x 'A = I.
2) A € SO3(R). Pour ce faire on peut :
x soit démontrer det(A) = 1.

x soit démontrer : C3 = C7 A Cs.
En effet, comme (C3,C1) = 0 et (C3,C2) = 0 alors :

C5 € (Vect (C1, Ca))t = Vect (Cy A Cs)
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Comme ||C3]| =1 alors C3 = £C1 A Cs. Exercice 1

— R3
1= det(A) = det (€1 Cy Cy)) = [C1,Ca, Cs] = (C1ACa, Cs) gy my  OTORS B =R

On note f I'endomorphisme de E dont la matrice dans la base canonique
Et ainsi : C7 A Cy = (.

-2 6 3
3) 1l reste alors & déterminer les éléments caractéristiques de f : % de E est A= - ( 6 3 2).

» l'axe de la rotation D = Ker(f —idg). -3 2 =6
Cela correspond & déterminer le sous-espace propre Eq(f). On met 1. Démontrer que f est une rotation et en déterminer les caractéristiques

donc en place la stratégie habituelle de détermination de sous-espace (angle et axe).
propre. Ce sous-espace propre et de dimension 1 et s’écrit donc : 1 [-7 4 4 1 (2 1 2
D =Ker(f —idg) = Vect (x). On note alors a = i. 2. Méme question avec Ay = 9 4 8 —1], puis A3 = 3 -2 2 1
] 4 1 -8 1 -2 2
On obtient ainsi un vecteur unitaire qui dirige et oriente D. - V21
» la mesure 6 de 'angle de rotation. et enfin Ay = 5 (\/5 0 \/5) )
x le cosinus de 'angle 6 est donné par : 1 V2 1
t(f) = tr (Mat@(f)) Démonstration.
= 142 cos(d) 1. (i) Démontrons tout d’abord_: A € O3(R)
1
Ainsi:cos(e)zg(tr(f)—l)etdonc: . 1 (26 3\ /-2 6 -3 1 (49 0 0
A><A2763—2><?6 3 2 :EOALQO = I3
-3 2 -6 3 -2 -6 0 0 49

6 = + arccos G( tr(f) — 1)) [2 ]

x il reste enfin & déterminer le signe de 6. Pour tout vecteur u unitaire O AC 1 252 A 1 g 1 1 2114 1 32 o
et orthogonal a a : 7 _3 7 9 77 40 7 6
sin(0) = [a,u, f(u)] Cela démontre :
Pour s’en convaincre, on considére la famille %' = (a,u,v) ou det(4) = det((C1 C2 C3))
v = a A u. Cette famille est une base orthonormée directe de F. = [C1,Cy, O3]
10 0
= (C1 NCy,C
[a,u, f(u)] = det g (a,u, f(u)) =]0 1 cos(d)| = sin(f) (G 2 C3). 5, (R)
0 0 sin(f) = (C3,03).5,®) = 1
(ou encore : [a,u, f(u)] = (a Au, f(u)) = (v, f(u)) Ainsi, A € SO3(R). Cela démontre : f € SO(E).
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(iit) Déterminons alors ’axe de la rotation f

« Soit u € R3. 1l existe donc (x,vy, z) € R? tel que u = (x,v, 2).

T
Notons U = Mat g, (u) = (y) .

z

u € Eq(f) = (f —idg)(u) = Ops
— (A —13) U= O///3,1(R)
e 7'(14— 13) U= 0//[3‘1(1@)
-9 6 3 z 0
— 6 —4 -2 yl =10
-3 2 -13 z 0
—92 4+ 6y + 3z = 0
S 6z — 4y — 2z = 0
-3z + 2y — 13z = 0

Ly« Ly — Ly 3z —
<

On en déduit
Ei(f) = {(z,y,2) €R® | f(u) =u}
= {(z,y,2) €R® | 3z =2y et
= {(3y,9,0) eR® | yeR}
= {y-(3,1,0) eR? | yeR}
= Vect ((3,1,0))
= Vect ((2,3,0))

z:O}

L’endomorphisme f est une rotation d’axe
D = Vect ((2,3,0)) que l'on oriente par le vecteur unitaire

1
a=—= (2,3,0).

V13

(iv) Déterminons enfin la mesure 6 de ’angle de la rotation f

« D’apreés le cours, dans toute base orthonormée directe ' = (a, 2, e3) :

1 0 0
Matg (f) = (O cos() — sin(9)>
0 sin(f) cos(6)

On en conclut : tr(f) = tr (Matz(f)) =1+ 2 cos(d). Ainsi :

(tr (Mat(f)) — 1)

cos(f) = %

(tr (A) — 1)

N | =

(—2+3—6)

|~

Ainsi : § = + arccos <_75> [27].

(il reste alors a déterminer le sens de rotation c’est-a-dire de savoir

st la mesure de l’angle de rotation est § = arccos <7> [27] ou

— _ arccos <_75> (27

o Il reste & déterminer le signe de la mesure de I’angle de f.
Le vecteur u = (0,0, 1) est orthogonal & a et unitaire.
2

3

v 0 7 )
sin(f) = |a,u, f(u)| =det z(a,u, f(u)) =] 2= 0 2|=—r

0o 1 =
En développant par rapport & la deuxiéme colonne, on obtient :
1 13 V13
sin(f) = ———= (2x(-2)-3x3)=—==-"->0
7V13 7V 13 7
Finalement, I’endomorphisme f est la rotation vectorielle

5
d’axe D et d’angle de mesure arccos <—7>.

O]
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