Couples de v.a. discrètes : HEC 2010

Partie II. Loi géométrique

Soit p un réel de]0,1[et q=1-p. Soit X_1 et X_2 deux variables indépendantes de même loi géométrique de paramètre p (d'espérance $\frac{1}{n}$).

On pose : $Y = X_1 - X_2$, $T = \max(X_1, X_2)$ et $Z = \min(X_1, X_2)$. On rappelle que $T + Z = X_1 + X_2$ et $T - Z = |X_1 - X_2| = |Y|$.

- 1. a) Rappeler sans démonstration les valeurs respectives de $\mathbb{V}(X_1)$ et de $\mathbb{P}(\{X_1 \leq k\})$, pour tout k de $X_1(\Omega)$.
 - **b)** Calculer $\mathbb{E}(X_1 + X_2)$, $\mathbb{V}(X_1 + X_2)$, $\mathbb{E}(X_1 X_2)$, $\mathbb{V}(X_1 X_2)$.
 - c) Établir la relation : $\mathbb{P}(\{X_1 = X_2\}) = \frac{p}{1+q}$.
- 2. a) Montrer que Z suit la loi géométrique de paramètre $1-q^2$. En déduire $\mathbb{E}(Z)$, $\mathbb{V}(Z)$ et $\mathbb{E}(T)$.
 - b) Soit k un entier de \mathbb{N}^* . Justifier l'égalité : $\{Z = k\} \cup \{T = k\} = \{X_1 = k\} \cup \{X_2 = k\}$. En déduire la relation suivante : $\mathbb{P}(\{T = k\}) = 2 \mathbb{P}(\{X_1 = k\}) - \mathbb{P}(\{Z = k\})$.
 - c) Établir la formule : $\mathbb{V}(T) = \frac{q \left(2q^2 + q + 2\right)}{\left(1 q^2\right)^2}$.
- 3. a) Préciser $(T-Z)(\Omega)$. Exprimer pour tout j de \mathbb{N}^* , l'événement $\{Z=j\} \cap \{Z=T\}$ en fonction des événements $\{X_1=j\}$ et $\{X_2=j\}$. En déduire pour tout j de \mathbb{N}^* , l'expression de $\mathbb{P}(\{Z=j\} \cap \{Z=T\})$.
 - **b)** Montrer que pour tout couple (j,l) de $(\mathbb{N}^*)^2$, on a : $\mathbb{P}(\{Z=j\} \cap \{T-Z=l\}) = 2 p^2 q^{2j+l-2}$.
 - c) Montrer que pour tout k de \mathbb{Z} , $\mathbb{P}(\{X_1 X_2 = k\}) = \frac{pq^{|k|}}{1+q}$. (on distinguera trois cas : k = 0, k > 0 et k < 0)
 - d) En déduire la loi de la variable aléatoire $|X_1 X_2|$.
 - e) Établir à l'aide des questions précédentes que les variables Z et T-Z sont indépendantes.
- 4. a) À l'aide du résultat de la question 3.e, calculer Cov(Z,T). Les variables Z et T sont-elles indépendantes?
 - b) Calculer en fonction de q, le coefficient de corrélation linéaire ρ de Z et T.
 - c) Déterminer la loi de probabilité du couple (Z, T).
 - d) Déterminer pour tout j de \mathbb{N}^* , la loi de probabilité conditionnelle de T sachant l'événement $\{Z=j\}$.
 - e) Soit j un élément de \mathbb{N}^* . On suppose qu'il existe une variable aléatoire D_j à valeur dans \mathbb{N}^* , dont la loi de probabilité est la loi conditionnelle de T sachant l'événement $\{Z=j\}$. Calculer $\mathbb{E}(D_j)$.