Suites et séries de fonctions

Exercices d'illustration (préparation des colles)

I. Exercice(s) corrigé(s)

Suites de fonctions

Exercice 1

Pour tout $n \in \mathbb{N}$, on note $f_n : x \mapsto n^2 x^n (1-x)$.

- 1. Démontrer que la suite (f_n) converge simplement sur I = [0, 1] vers une fonction à déterminer.
- 2. Démontrer que la suite (f_n) converge uniformément sur tout intervalle du type [0, a] où 0 < a < 1.
- 3. La suite (f_n) converge-t-elle uniformément sur [0,1]?
- 4. Pour tout $n \in \mathbb{N}^*$, on note $I_n = \int_0^1 f_n(x) dx$.
 - a) Démontrer: $\forall n \in \mathbb{N}^*, I_n = \frac{n^2}{(n+1)(n+2)}.$
 - **b)** Comparer : $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$ et $\int_0^1 \left(\lim_{n \to +\infty} f_n(x)\right) dx$.
 - c) Quel résultat retrouve-t-on?

Exercice 2

Pour tout $n \in \mathbb{N}$, on note $f_n : x \in [0, 1] \mapsto \sin(n x e^{-nx})$.

- 1. Montrer que (f_n) converge simplement sur [0,1] vers une fonction f à déterminer.
- 2. Montrer qu'il y a convergence uniforme sur [a, 1] si 0 < a < 1.
- 3. Y a-t-il convergence uniforme sur [0,1]?

Exercice 3

On considère la suite de fonctions (f_n) définie par : $\forall n \in \mathbb{N}, f_n : x \mapsto \frac{1}{(1+x^2)^n}$.

- 1. Démontrer que la suite de fonctions (f_n) converge simplement sur $[0, +\infty[$ vers une fonction f à déterminer.
- 2. Soit a > 0. Démontrer que la suite de fonctions (f_n) converge uniformément sur $[a, +\infty[$.
- 3. On souhaite maintenant démontrer que la suite (f_n) ne converge pas uniformément sur $[0, +\infty[$.
 - a) En considérant une suite (x_n) (de limite nulle) convenablement choisie, répondre à la question.
 - b) Répondre de nouveau à la question en exploitant une propriété de la fonction f.

Exercice 4

Pour tout $n \in \mathbb{N}^*$, on note : $f_n : x \mapsto \frac{x}{1 + n^2 x^2}$.

- 1. Démontrer que la suite de fonctions (f_n) converge simplement sur $[0, +\infty[$ vers une fonction f à déterminer.
- 2. Démontrer que la suite de fonctions (f_n) converge uniformément sur $[0, +\infty[$ vers f.

Séries de fonctions

Exercice 5

Pour tout $n \in \mathbb{N}^*$, on note f_n la fonction $f_n : x \mapsto \frac{1}{n^2x + n}$.

1. Pour quels x la série $\sum_{n\geqslant 1}f_n(x)$ est-elle convergente? On note S(x) sa somme en cas de convergence.

<u>Autre formulation</u>: on note $S: x \mapsto \sum_{k=1}^{+\infty} f_k(x)$. Trouver le domaine de définition de S.

- 2. Montrer que S est de classe \mathscr{C}^1 sur $]0, +\infty[$.
- 3. a) Déterminer : $\lim_{x \to +\infty} x S(x)$.

(on pourra utiliser, sans démonstration : $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$)

- b) En déduire un équivalent de S en $+\infty$.
- 4. Trouver un équivalent de S(x) quand x tend vers 0.

Exercice 6

On s'intéresse à $S: x \mapsto \sum_{n=1}^{+\infty} (-1)^n \frac{e^{-x\sqrt{n}}}{n}$.

- 1. Donner le domaine de définition de S.
- 2. Montrer que S est dérivable sur son domaine de définition.
- 3. Montrer que S est monotone sur son domaine de définition.
- 4. Que dire de S au voisinage de $+\infty$?

Exercice 7

On considère la suite de fonctions (f_n) définie par : $\forall n \in \mathbb{N}, f_n : x \mapsto \frac{x}{1 + n^4 x^4}$.

- 1
- 2. Démontrer que la série de fonctions $\sum f_n$ converge simplement sur \mathbb{R} .
- 3. Soit $(a, b) \in \mathbb{R}^2$. On suppose 0 < a < b.
 - a) Démontrer que la série de fonctions $\sum f_n$ converge normalement sur [a,b].
 - b) Démontrer que la série de fonctions $\sum f_n$ converge normalement sur $[a, +\infty[$.
- 4. Démontrer que la fonction $\sum_{n=0}^{+\infty} f_n$ est continue sur \mathbb{R}^* .
- 5. Démontrer que la série de fonctions $\sum f_n$ ne converge pas normalement sur $[0, +\infty[$. On pourra s'intéresser à la série numérique $\sum f_n\left(\frac{1}{n}\right)$.

II. Exercice(s) conseillé(s)

Exercice 8

Pour tout $n \in \mathbb{N}$, on note $f_n : x \mapsto e^{-nx} \sin(2nx)$.

- 1. Montrer que (f_n) converge simplement sur $[0, +\infty[$ vers une fonction f à déterminer.
- 2. Montrer qu'il y a convergence uniforme sur $[a, +\infty[$ si a > 0.
- 3. Y a-t-il convergence uniforme sur $[0, +\infty[$?

- 4. Pour tout $n \in \mathbb{N}^*$, on note $I_n = \int_0^1 e^{-nx} \sin(2nx) dx$.
 - a) Démontrer : $\forall n \in \mathbb{N}^*, I_n = -\frac{2}{5n} e^{-n} \cos(2n) \frac{e^{-n}}{5n} \sin(2n) + \frac{2}{5n}$.
 - **b)** En déduire : $\lim_{n \to +\infty} \int_0^1 f_n(x) dx = \int_0^1 \left(\lim_{n \to +\infty} f_n(x) \right) dx$.
 - c) Peut-on en conclure que la suite (f_n) converge uniformément sur [0,1]?

Exercice 9

Pour tout $n \in \mathbb{N}$, on note $f_n : x \mapsto \frac{n+1}{n+2} e^{-n x^2}$.

- 1. Montrer que (f_n) converge simplement sur $[0, +\infty[$ vers une fonction f à déterminer.
- 2. Montrer qu'il y a convergence uniforme sur $[a, +\infty]$ si a > 0.
- 3. Y a-t-il convergence uniforme sur $[0, +\infty[$?
- 4. Pour tout $n \in \mathbb{N}^*$, on note $I_n = \int_0^1 f_n(x) dx$.
 - a) Démontrer : $\forall n \in \mathbb{N}^*, I_n = \frac{n+1}{n+2} \frac{1}{\sqrt{2n}} \int_0^{\sqrt{2n}} e^{-\frac{1}{2} x^2} dx.$
 - **b)** En déduire : $\lim_{n \to +\infty} \int_0^1 f_n(x) dx = \int_0^1 \left(\lim_{n \to +\infty} f_n(x) \right) dx$.
 - c) Peut-on en conclure que la suite (f_n) converge uniformément sur [0,1]?

Exercice 10

Pour tout $n \in \mathbb{N}^*$, on note $f_n : x \mapsto \frac{x^n}{n^2 (1 + x^{2n})}$.

- 1. Démontrer que la suite (f_n) converge simplement sur \mathbb{R} .
- 2. Déterminer le domaine de définition de la fonction $S: x \mapsto \sum_{k=1}^{+\infty} f_k(x)$.
- 3. Étudier la continuité de S sur son domaine de définition.
- 4. Déterminer la limite de S en $+\infty$.

Exercice 11

On s'intéresse à $S: x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt{x+n}}$.

- 1. Donner le domaine de définition I de S.
- 2. a) Montrer que S est continue sur I.
 - b) Déterminer la limite de S en 0.
 - c) Déterminer la limite de S en $+\infty$.
- 3. a) Montrer que S est de classe \mathscr{C}^1 sur I.
 - b) Montrer que S est monotone sur I.